
How planar superconductors 
cure their infrared divergences

Systems

By Terra Quantum AG

terraquantum.swiss 2022



J
H
E
P
1
0
(
2
0
2
2
)
1
0
0

Published for SISSA by Springer

Received: May 17, 2022
Revised: August 30, 2022

Accepted: October 7, 2022
Published: October 17, 2022

How planar superconductors cure their infrared
divergences

M.C. Diamantini,a C.A. Trugenbergerb and V.M. Vinokurc
aNiPS Laboratory, INFN and Dipartimento di Fisica e Geologia, University of Perugia,
via A. Pascoli, Perugia I-06100, Italy

bSwissScientific Technologies SA,
rue du Rhone 59, Geneva CH-1204, Switzerland

cTerra Quantum AG,
St. Gallerstrasse 16A, Rorschach 9400, Switzerland
E-mail: cristina.diamantini@pg.infn.it, ca.trugenberger@bluewin.ch,
vv@terraquantum.swiss

Abstract: Planar superconductors, emerging in thin films with thickness comparable
to the superconducting coherence length, differ crucially from their bulk counterparts.
Coulomb interactions between charges are logarithmic up to distances comparable to typ-
ical sample sizes and the Anderson-Higgs mechanism is ineffective to screen the infrared
divergences of the resulting (2+1)-dimensional QED because the Pearl length screening
the vortex interactions is also typically larger than the sample size. As a result, the system
decomposes into superconducting droplets with the typical size of order of superconducting
coherence length. We show that two possible phases of the film match the two known mech-
anisms for curing the (2+1)-dimensional QED infrared divergences, either by generating
a mixed topological Chern-Simons mass or by magnetic monopole instantons. The former
mechanism works in superconductors, the latter one governs mirror-dual superinsulators.
Planar superconductors are thus described by a topological Chern-Simons gauge (TCSG)
theory that replaces the Ginzburg-Landau model in two dimensions. In the TCSG model,
the Higgs field is absent. Accordingly, in planar superconductors Abrikosov vortices do not
form, and only Josephson vortices without normal core do exist.
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Superconducting films thinner than the superconducting coherence length ξ bring into
being two-dimensional (2D) superconductors whose properties differ crucially from their
bulk counterparts. Firstly, global 2D superconductivity, where the whole system becomes
phase-coherent, sets in at temperatures below the Berezinskii-Kosterlitz-Thoules (BKT)
transition, T 6 TBKT, see [1–3] for a review. In other words, ‘two-dimensional’, referred
hereafter as ‘planar’ superconductivity, arises via a topological phase transition. Next, pla-
nar superconductors harbor the celebrated superconductor-insulator transition (SIT), [4],
which has been demonstrated to be a topological phase transition as well, and phases
emerging in its vicinity are identified as topological phases [5].

The macroscopic physics of superconductors is commonly described by the Ginzburg-
Landau (GL) theory [2] neglecting usually the Coulomb interactions. Planar superconduc-
tivity, in films with the thickness d . ξ, is still discussed within the GL framework with
the order parameter having a fixed amplitude and phase [6]. The bosonic model of the SIT
typically treats fluctuations of the phase in the XY model [3] and the Coulomb interaction
is still neglected, since it is modelled by the same 1/r potential as in the 3D case. Here
we demonstrate that the common treatment of planar superconductivity neglects crucial
aspects distinguishing films from their bulk counterparts and outline the topological gauge
theory replacing the standard approaches [7, 8].

We consider physical systems hosting truly 2D superconductivity and realized by thin
films with d . ξ. This ensures that electric currents are confined exclusively within-
plane and that, correspondingly, the magnetic field fluctuations are perpendicular to the
plane. This, however, is not sufficient; to ensure the full 2D behavior, the electric field
lines also must remain within the plane, implying that the Coulomb interaction has the
2D logarithmic potential. To that end, we consider materials experiencing the SIT. In the
vicinity of the SIT, superconducting films develop a huge normal-state dielectric constant ε
and the Coulomb interaction maintains the 2D Coulomb logarithmic form over the spatial
scale range d � r � Λc, where the 2D screening length Λc ' εd [9] reaches macroscopic
scales, which is analogous to the behavior of the finite-temperature Coulomb potential in
3D, with β = 1/T playing the same role as d, see, e.g., [10]. For example, in the TiN
films, the exemplary systems manifesting the SIT, with d = 5 nm, Λc ' 200µm. This, in
turn, implies that, on the relevant spatial scales, one can consider electric interactions as
genuinely 2D. As the strong logarithmic interactions cannot be neglected, the Ginzburg-
Landau model has to be coupled to the 2D electromagnetism. In the common approach,
having absorbed the phase within the usual Anderson-Higgs mechanism, see e.g., [2], the
gauge fields become massive and remain coupled to charge fluctuations of the condensate.
Importantly, in thin films, the scale on which gauge fields are screened, i.e., the inverse of the
Anderson-Higgs mass, is given by the Pearl length λ⊥ = λ2

L/d, where λL =
√
mc2/4πnse2

is the London screening length (m and e are the electron mass and charge respectively, ns

is the density of superconducting electrons, c is the light speed). The Pearl length is also
of a macroscopic scale and for d ' ξ, the Pearl length in the TiN films is ≈ 100µm, i.e.,
comparable to the characteristic sizes of the experimental systems. This means that on
the relevant spatial scales the gauge fields remain massless within the film.

Let us consider the perturbative expansion around the trivial gauge vacuum corre-
sponding to vanishing fields. The resulting model is the non-compact QED in (2+1) di-
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mensions, which is famously infrared divergent [11, 12], since the perturbation parameter
is ∝ log R/a where a is the ultraviolet (UV) cutoff, in our case the coherence length ξ,
and R the infrared (IR) cutoff, the system size. As a consequence the model becomes non-
perturbative (and thus ill-defined) for system sizes ξ � R ≤ λ⊥. Such superconductors
epytomize what we call planar superconductors: in the formal limit d→ 0 every supercon-
ductor is in this class. This implies that for planar superconductors the Anderson-Higgs
mechanism is ineffective. In what follows we describe how these planar superconductors
cure their infrared divergences.

There are two ways in which gauge fields in (2+1) dimensions can get rid of their
divergences. The first path is to generate a mass via magnetic monopole instantons, re-
alizing tunneling between the non-trivial topological gauge vacua [11]. The other route
is to generate a topological Chern-Simons (CS) mass [12, 13]. This second way, however
entails breaking the discrete PT , parity and time-reversal invariance, symmetries. This
undesired property can be circumvented, however, by the CS mass arising in a model
with two gauge fields and a mixed topological term [14]. Depending on the magnitude
of d, the system chooses one of these possibilities. The former way results in formation
of superinsulators [14–17], the latter results in planar superconductors that are the fo-
cus of present communication. Actually, there is a third possibility, which consists of
eliminating completely both possible condensates, Cooper pairs and vortex ones, leading
to the Bose metal [14, 18–20]. The topological CS mass comprises the product of two
characteristic magnetic and electric length scales, so that the film thickness d falls out.
The resulting gauge screening length is not the Pearl length but the original bulk London
penetration depth

λtop = O (λL) . (1)

The topological gauge theory of superconductivity replaces the Ginzburg-Landau model
for planar superconductors [7, 8]. In this model there is no Higgs field and no Abrikosov
vortices that are replaced by Josephson vortices.

Let us now describe in detail the working of the topological gauge theory. If we
freeze instantons, the system has no other choice to regularize itself but to break up the
condensate into the “perturbative” droplets of the size O(ξ). These droplets are indeed
observed in thin superconducting films [21]. Each of these droplets is characterized by an
independent phase of the condensate and, thus, there exist topological configurations in
which the circulation of these phases over the neighboring droplets is a multiple of 2π.
These circulations constitute Josephson vortices see, e.g., [2], having a nontrivial phase
structure but no normal-state core. Indeed, within the droplets, Abrikosov vortices cannot
exist if the droplet size compares to ξ [22] (this is the so-called Likharev vortex explosion
phenomenon). The system forms global superconductivity as the Cooper pair tunneling
between the droplets establishes the global phase coherence.

The importance of the droplet structure and vortices has already been noticed in very
early studies of thin superconducting films. It has been posited that these vortices can
condense [23–27] at the insulating side of the SIT. The flaw of this straightforward picture,
however, is that there is no duality between ballistic Cooper pairs and Abrikosov vor-
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tices, with their normal core and resulting dissipative motion making it impossible for the
Abrikosov vortices to Bose condense. Here we point out that, on the contrary, the duality
is realized and condensation may be possible for Josephson vortices that can form amidst
the droplets by realizing the non-trivial circulation of their local phases. These Josephson
vortices have no dissipative core but only a gauge structure and are, correspondingly, bal-
listic. Two other crucial aspects of the existence of Josephson vortices have been remaining
underexplored. First circumstance, that near enough to the SIT the parameter window
in which vortices become ballistic, thus moving without dissipation, gets really wide and
diverges near the transition [28]. Second, charges and vortices are subject to topological in-
teractions leading to generating the Aharonov-Bohm [29] and Aharonov-Casher [30] phases.
These topological interactions are the infrared-dominant ones and crucially influence the
long-range properties of the system. This is ultimately the reason why the treatment of
thin superconducting films only in terms of the phase governed by the XY model neglect-
ing the most important interactions is not correct. Note that the original particle-vortex
duality of the XY model (see e.g., [3]) is broken by the charge energy term necessary to
adequately describe real superconducting films and Josephson junction arrays [26]. This
charge energy term can be represented as a kinetic term for the charge degrees of freedom
in the action [14]. Adding the corresponding vortex kinetic term and the mutual statistics
interactions, restores the full duality of the model.

Following [14, 19] we treat the condensate droplets of Cooper pairs and the vortices
between them in the continuum space-time with coordinates x = (x0,x) as point-like
objects by introducing the fields

Qµ = QI

∫
ds

dxµI
ds

δ3 (x− xI(s)) ,

Mµ = MJ

∫
dt

dxµJ
dt

δ3 (x− xJ(t)) , (2)

with xI(s) and xJ(t) parametrizing closed (for fluctuations) or infinitely long space-time
trajectories so that ∂µQµ = 0, ∂µMµ = 0. We will then identify the droplet size as a scale
of the necessary ultraviolet cutoff. These fields describe the integer charges and vortices
that constitute the main dynamical degrees of freedom of our model. Note that both
trajectories and integer charge and vortex numbers QI and MJ are fluctuating dynamical
variables summed over in the partition function, as described in more detail below. The
mutual statistics interactions are encoded in the Euclidean partition function by phases
(we use natural units c = 1, ~ = 1, ε0 = 1)

Stop = i 2π
∫
d3x Qµεµαν

∂α
∇2Mν , (3)

where εµαν denotes the totally antisymmetric tensor. Using the 3D Green function

1
−∇2 δ

3(x) = 1
4π

1
|x|

, (4)
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one obtains

Stop (QI ,MJ) = i2πQIMJΦ (CI , CJ) ,

Φ (CI , CJ) = 1
4π

∫ 1

0
ds

∫ 1

0
dt

dxµI
ds

εµαν
(xI − xJ)α

|xI − xJ |3
dxνJ
dt

. (5)

For closed Euclidean trajectories CI and CJ , the quantity Φ (CI , CJ) represents the integer
Gauss linking number, the simplest topological knot invariant, see [31]. If the excitations
satisfy the quantization condition QIMJ = integer for all I, J , the above phase becomes
trivial for closed trajectories, corresponding, e.g., to a Minkowski space-time fluctuation
creating a charge and a hole that annihilate after having encircled a vortex. In general,
however, Aharonov-Bohm-Casher (ABC) phases lead to non-trivial quantum interference
effects that cannot be neglected.

Superficially, it looks like the topological interactions are non-local, see (3), and thus
difficult to treat. As was pointed out by Wilczek [32], however, there exists a local formu-
lation by coupling the charge and vortex trajectories to two gauge fields aµ and bµ with a
mixed Chern-Simons interaction [14], leading to the Euclidean partition function

Z =
∑

{Qµ,Mµ}

∫
DaµDbµe−S ,

S =
∫
d3x

i

2πaµε
µαν∂αbν + iaµQ

µ + ibµM
µ . (6)

This is the reason why the effective field theory of planar superconductors must be formu-
lated in terms of gauge fields. As mentioned above, the notation in (6) is a short-hand for
a model that is formally defined on a lattice, with the gauge fields as real variables living
on the links and the charges and vortices as integer variables defined on the sites and links.
The partition function involves then Riemann integration over the real-valued gauge fields
and simple summation over the integer charges and vortices. Note that, at the classical
level, the equations of motion imply that the dual gauge field strengths

fµ = 1
2ε

µανfαν = εµαν∂αbν = 2πQµ ,

gµ = 1
2ε

µανgαν = εµαν∂αaν = 2πMµ , (7)

can be interpreted as the conserved charge and vortex currents respectively. We use the
notation in which charges and vortices are quantized in integer multiples of 2e and π/e =
2π/2e. The charge unit 2e can always be written as the coupling constant in front of the
effective Maxwell term, as we now discuss. Note also that we do not consider single-electron
fluctuations in this paper, assuming that their gap is sufficiently large to be neglected.

We now proceed with the usual construction of the long-distance effective field theory
for this system. Once the relevant symmetry has been identified, all power-counting rele-
vant and marginal terms consistent with this symmetry have to be added to the action. In
this case the symmetry is a U(1)⊗U(1) gauge symmetry and it is thus easy to identify the
possible next-order terms. They must involve two derivatives and be U(1) gauge invariant.
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Therefore the only possible choices are simply the usual Maxwell terms for the two gauge
fields,

S =
∫
d3x

i

2πaµε
µαν∂αbν + 1

2e2
v

fµfµ + 1
2e2
q

gµgµ + iaµQµ + ibµMµ . (8)

The two parameters e2
q and e2

v define the orders of magnitude of the electric and magnetic
energies of an elementary charge 2e having the spatial scale d and an elementary flux
quantum Φ0 = π/e possessing the spatial scale λ⊥,

e2
q = O

(
4e2

d

)
,

e2
v = O

(
Φ2

0
λ⊥

)
= O

(
π2

e2λ⊥

)
= O

(
π2d

e2λ2
L

)
. (9)

They represent the two typical energy scales in the problem, and their ratio determines
the relative strength of magnetic and electric forces. Non-relativistic effects can be taken
into account by considering the “space component” x0 = vt where v is the velocity of the
propagation in the medium and, correspondingly, all time derivatives with respect to x0
and gauge field components with index “0” as time derivatives with the prefactor 1/v. Of
course, in this effective field theory approach we cannot determine the exact coefficients in
front of the two couplings.

The two parameters e2
q and e2

v can be traded for the topological CS mass [12, 13]
m = eqev/2πv, appearing in the dispersion relation of both charges and vortices,

E =
√
m2v4 + v2p2 , (10)

and one dimensionless parameter g = ev/eq = O(d/(αλL)), where α = e2/4π is the fine
structure constant. This parameter plays the role of a dimensionless conductivity and
is the quantum parameter which “selects” between the two infrared-catastrophe-avoiding
models [14, 19].

Given that e2
q and e2

v have canonical dimension [1/length] and, correspondingly, the
two kinetic terms in (8) are infrared-irrelevant, one might be tempted to leave them out and
consider anyway only the infrared-dominant mixed Chern-Simons theory. Unfortunately,
this leads to wrong results and the origin of the problem lies exactly in the role of the droplet
charges Qµ and the Josephson vortices Mµ. Indeed, the limit m → ∞ does not commute
with quantization since it involves a phase-space reduction [33]. For physical applications,
opposing the purely mathematical ones involving the knot theory, the topological theory
has to be always considered as the m → ∞ limit of the topologically massive [13] one,
since, otherwise, the physical states are not normalizable. However, when two gauge fields
are present, the “topological limit” e2

q → ∞ and e2
v → ∞ is not well defined without

specifying the value of g in this limit. The behavior of charges and vortices depends
crucially on this value and, as a consequence, one obtains very different ground states
when g is varied [14, 19].
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We now minimally couple the charge current jµ to the real electromagnetic field Aµ
by adding to the action the term

S → S + i

2π

∫
d3x Aµf

µ , (11)

and we compute the effective action Seff (Aµ, Qµ,Mµ) by integrating over the fictitious
gauge fields aµ and bµ. This gives Seff = Seff (Aµ, Qµ) as

Seff =
∫
d3x

[
e2

q
2 Qµ

δµν
−∆ +m2v2Qν + i2πm2v2Qµ

εµαν∂α
∆(−∆ +m2v2)

(
Mν + 1

2πFν
)

+e2
v
2

(
Mµ + 1

2πFµ
)

δµν
−∆ +m2v2

(
Mν + 1

2πFν
)]

, (12)

with Fµ = εµνα∂νAα being the real dual electromagnetic field strength. Following the
typical approach in lattice gauge theories [34] we retain only the self-interaction terms in
eq. (12), replacing the interaction kernel with its diagonal component

G(x− y) = 1
m2v2 −∆δ3(x− y)→ `2G(mv`) δ3(x− y) , (13)

where the necessary UV cutoff ` represents, as anticipated, the droplet size. This is, of
course, an approximation, in which the screened potential is replaced by the first term in
its derivative expansion, which is the delta-function of a strength depending on the ratio
of the two length scales ` and 1/mv. We also introduce the numerical parameter η =
(mv`)G(mv`). This is a numerical constant of order O(1) depending on the dimensionless
quantity mv` and is the second parameter determining the quantum phase structure [14,
19]. Equation (12) become thus

Seff =
∫
d3x

[
1
2

2π`η
g

Q2
µ + 1

22π`ηg
(
Mµ + 1

2πFµ
)2

+ i2π(mv`)ηQµ
εµνα∂ν

∆

(
Mα + 1

2πFα
)]

.

(14)
Let us now show how superconductivity emerges from the global condensation of the

droplet charges in a phase with no vortices, Mµ = 0. This means that droplets get con-
nected by quantum tunnelling, forming global phase coherence (therefore no vortices), i.e.
a global condensate. In this phase there are no more integer-valued charges because tun-
nelling percolation on the droplets forms a global condensate. Correspondingly, the original
integer-valued degrees of freedom Qµ become a real-valued field Hµ over which we have
to integrate in the partition function. To that end we first solve the constraint ∂µHµ = 0
by the introduction of a new gauge field nµ defined as Hµ = εµαν∂αnν . This is the gauge
field since shifts of nµ by derivatives leave the conserved charge currents invariant. The
effective action for the electromagnetic field Aµ becomes

Seff =
∫
d3x

1
2

2π`η
g

H2
µ + 1

2
`ηg

2π F
2
µ − i(mv`)η nµεµαν∂αAν , (15)

As anticipated, this effective action is not a Ginzburg-Landau/Higgs model but, rather,
a mixed Chern-Simons topological theory. The electromagnetic gauge field does not ac-
quire its mass by the Anderson-Higgs mechanism but by the topological mass generation
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mechanism [12, 13] with the gauge field mass m = eqev/2π. The corresponding screening
length λtop = 1/mv is the bulk London penetration depth (1). Note also that the effec-
tive coupling of the Maxwell term in the action is O(d`/e2λtop), as can be seen using (9).
This shows that the Coulomb coupling constant is renormalized to an effective coupling
e2λtop/`: when ` ≈ λtop we have the usual electron charge, when ` becomes small the
effective Coulomb interaction increases.

In the dual phase with independent droplet phases and a vortex condensate, we set
Qµ = 0 while keeping the integration over the vortex degrees of freedom Mµ. This phase
is particularly interesting for materials characterized by very high dielectric constants, so
that v � 1 and we can neglect the magnetic components with respect to the electric ones
in the effective action, which becomes

Seff (Mµ, Aµ) =
∫
d3x

e2
v`

2G

v28π2 (Fi + 2πMi)2 , (16)

where the latin indices “i” denote purely spatial coordinates. This is the non-relativistic
version [35] of Polyakov’s compact QED [11] in which magnetic monopole instantons create
the confining linear potential between the probe charges and generate the photon mass.
This dual phase is a superinsulator [14, 15].

To conclude, planar superconductors cure their infrared divergences by realizing either
of two possible phases with the effective actions corresponding to the two known mech-
anisms of the gauge field mass generation different from the Anderson-Higgs mechanism.
This Higgsless, topological superconductivty [7, 8] is the only possibility in the 2D, but
may be realized also in the 3D bulk materials [36, 37]. Indeed, 3D bulk materials with the
emergent granularity typical of planar superconductors have been recently found [38].
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