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Depending on the Ginzburg–Landau parameter κ ,
superconductors can either be fully diamagnetic if κ < 1/

√
2

(type I superconductors) or allow magnetic flux to penetrate
through Abrikosov vortices if κ>1/

√
2 (type II superconduc-

tors; refs 1,2). At the Bogomolny critical point, κ=κc=1/
√
2, a

state that is infinitely degeneratewith respect to vortex spatial
configurations arises3,4. Despite in-depth investigations
of conventional type I and type II superconductors, a
thorough understanding of the magnetic behaviour in the
near-Bogomolny critical regime at κ∼κc remains lacking. Here
we report that in confined systems the critical regime expands
over a finite interval of κ forming a critical superconducting
state. We show that in this state, in a sample with dimensions
comparable to the vortex core size, vortices merge into a
multi-quanta droplet, which undergoes Rayleigh instability5
on increasing κ and decays by emitting single vortices.
Superconducting vortices realize Nielsen–Olesen singular
solutions of the Abelian Higgs model, which is pervasive
in phenomena ranging from quantum electrodynamics
to cosmology6–9. Our study of the transient dynamics
of Abrikosov–Nielsen–Olesen vortices in systems with
boundaries promises access to non-trivial e�ects in quantum
field theory by means of bench-top laboratory experiments.

The evolution of magnetic properties of an infinite supercon-
ductor when crossing κc is shown in Fig. 1. Type I superconductors
with κ <κc expel magnetic field H until it reaches a critical field Hc
beyond which superconductivity is destroyed (Fig. 1b,e). In type II
superconductors with κ >κc, superconductivity extends into awider
region,Hc1<H<Hc2, wheremagnetic field penetrates the sample in
the form of Abrikosov vortices, tiny filaments of the normal phase
surrounded by encircling supercurrents (Fig. 1a,d), each carrying a
quantum magnetic fluxΦ0=π}/ce.

Finite-size systems acquire new features enriching their phase
diagram. Most importantly, type I superconductors fall into an
intermediate state, comprising alternating domains of normal
and superconducting phases with the period d ' 10

√
Dξ for

H'0.5Hc (ref. 10), where ξ is the coherence length and D is
the sample thickness. The intermediate state forms in the interval
(1−n)H c<H<Hc (n<1 is the shape-dependent demagnetization
factor) triggered by the local magnetic field near the edges of
the sample exceeding the critical value Hc and locally destroying
superconductivity (Fig. 1c,f). In type II superconductors, nucleation
of superconductivity occurs first near the sample boundary at a
specific surface critical fieldHc3>Hc2. In type I superconductorsHc3
can exceed Hc if κ . κc, as shown in Fig. 1b,e.

Near κ-induced criticality, with domains containing only a few
flux quanta, the intermediate state is unstable towards breaking
into an Abrikosov lattice and transient effects become important.
To analyse transient behaviour, we consider a sample with κ . κc
containing a single domain or droplet of the normal phase, that
is, a sample with the lateral size L comparable to the period d of
the domain structure. This droplet is nothing but a giant vortex
with a normal core comprising several flux quanta11. Its critical
fission occurs by splitting an N -quanta droplet (Nq-droplet) into a
(N − 1)q-droplet and a single 1q vortex moving away (see Fig. 2).
To calculate the energy difference between the Nq-droplet and the
configuration consisting of the residual (N − 1)q-droplet and the
separated vortex, we construct a perturbation theory in the vicinity
of the Bogomolny point over the small parameter γ = κ2

− κ2
c

(Supplementary Information) and identify three contributions to
the interaction energy (see Fig. 2c):

U (l)=Ue(l)+Ui(l)+Uc(l) (1)

where l is the distance between the vortex and the droplet.
The intrinsic interaction energy of the (N −1)q-droplet with the
separated vortex calculated in ref. 12 (see also Supplementary
Information and ref. 13) is

Ue(l)=−γ
α

4
√
N

D
λ
H 2

c λl
2, α'0.3 (2)

where λ is the London electromagnetic screening length. This term
yields attraction at γ < 0 as expected. Magnetostatic repulsion
energy due to stray fields generated by vortices near the sample
surface is

Ui(l)=−2ζ(N )H 2
c λl

2, ζ(N )'0.04
√
N (3)

Finally, the confinement energy due to interaction of the external
field H with the vortex, holding the droplet together is

Uc(l)=2η
H
Hc

λ

L
H 2

c λl
2, η'0.52 (4)

As follows from equation (4), decreasing the field reduces the
confinement strengths. At some threshold field, the repulsive forces
begin to dominate and a single vortex splits from the droplet. On
further decreasing the field, individual vortices sequentially detach
from the droplet and escape from the sample. This disintegration
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Figure 1 | Superconducting phase diagrams and corresponding magnetization curves. a–c, Phase diagrams for type II superconductor (a), type I
superconductor (b) and type I finite-size superconductor (c). d–f, The corresponding magnetization curvesM(H) for type II superconductor (d), type I
superconductor (e) and type I finite-size superconductor (f). Note that Hc3>Hc holds only as long as κ >0.42.
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Figure 2 | Droplet fission. a–c, Distribution of the magnetic flux in the (a) Meissner state, (b) vortex droplet state showing the calculated stray fields and
(c) sketch of the vortex interaction forces (Fe, Fc, and Fi) corresponding to the interaction energies (Ue, Uc and Ui) between the droplet and a separated
single vortex. d, Vortex droplet before start of the fission. e, Initial stage of separation of a single vortex from the droplet. f, Complete separation of the
vortex from the droplet.

mechanism is analogous to the instability introduced by Lord
Rayleigh5 in 1882 leading to fragmentation of charged liquid
droplets due to the competition between long-range Coulomb
repulsion forces and a short-range molecular attraction.

The threshold field Hinst(N ) at which the Nq-droplet becomes
unstable is determined from the instability point when the energy
U (l) changes its curvature and transforms from a convex function
to a concave one, and equations (1)–(4) yield

Hinst(N )=
L
λ0

[
ζ(N )
η

t 1/2+γ
α

8η
√
N

D
λ0

t
]
Hc (5)

Direct disintegration of an Nq-droplet into N single vortices
requires surmounting a higher confinement energy barrier than
one-by-one vortex decoupling.

The Rayleigh instability can be observed if the field Hinst(N )
falls into the region of the existence of the vortex droplet. On the
descending field branch, the vortex droplet appears as a residual of
the normal state in the finite sample below the surface critical field
Hc3=2.39κHc. Alternatively, on the ascending branch, the droplet
can form as a result of the field penetration in a Meissner state.
The threshold is defined by the condition that the external field at
the sample edges, H/(1−n), exceeds the field of first penetration

22 NATURE PHYSICS | VOL 11 | JANUARY 2015 | www.nature.com/naturephysics

© 2014 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/doifinder/10.1038/nphys3146
www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS3146 LETTERS

κ

κκ (T) = (0)/(1 + T 2/T2
c) 5

4

3

−4

−10

0

0 10

4

N = 2 3 4 5

Pb
N = 2

120

20 Hc3
Hc3

Hc3

Hc3

Hsh
Hsh

Hsh

Hc

Hc

Hc

Hc

Hc > Hc3
Hsh

−20

−100 100

0

0
T = 0.36 K

M
 (a

.u
.)100

80

80

60

40

20

0

60

40

20

0

0.8

0.6

0.4

0.2

0.0
0 1 2

Temperature (K)
3 4 5 6 7

0 1 2
Temperature (K)
3 4 5 6 7

6.6 6.8 7.0 7. 2

8 0 1 2
Temperature (K)

Temperature (K)

3 4 5 6 7 8

Hc < Hc3 Hc > Hc3

T = 2.0 K
30
20
10
0

−10
−20
−30

M
 (a

.u
.)

−100 1000

Hc

Hsh  = 0.42κ

 = cκ

14

12

10

8

6

4

2

0

M
 (a

.u
.)

T = 6.7 K

N = 2

a

b d

c

2 μm

κ

0H (mT)μ

0H (mT)μ

0H (mT)μ

0H
 (m

T)
μ

0H
 (m

T)
μ

0H
 (m

T)
μ

Figure 3 | Experimental phase diagrams. a, Experimental phase diagram of the meso-Pb crystal. The top inset shows the magnetization curveM(H) at
T=0.36K and demonstrates how Hsh, Hc3 and Hc were obtained experimentally. The black lines are guides to the eye. Top inset:M(H) at T=0.36K
demonstrating how Hsh, Hc3 and Hc were obtained experimentally. Bottom inset: experimental set-up of the crystal and the Hall probe array. b, The κ(T)
dependence of Pb (adopted from ref. 15). The inset showsM(H), as in the top inset in a, but at T=2.0K. c, Theoretical temperature dependencies of Hc,
Hc3 and Hsh. Numbered dotted lines show the calculated locus of instabilities with respect to N→N− 1 vortex droplet fission. Red dots show the
corresponding instabilities at T=6.7K and at T=7.0K, associated with the data in Fig. 5. d, Expanded interval Tx<T<Tc. The insets in b and d show the
experimentalM(H) dependencies in the diluted vortex gas regime at T=2K and in the metastable vortex droplet fission regime at T=6.7K, respectively.
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Figure 4 | Exemplary vortex configurations in the critical region. Evolution of the ground-state vortex structures on decreasing magnetic field in a
mesoscale triangular superconducting Pb prism at κ∼κc in the extended critical region where the vortex droplet can coexist with separate vortices. This
particular simulation is performed for T=5.5K, and parameters of the Pb sample Tc=7.2K, ξ(0)=66 nm and λ(0)=45 nm, with two-fluid model
temperature dependencies19.

into an infinite sample Hp ' (1/21/4κ1/2)(1+5.44κ/1+4.78κHc)

(ref. 14), which gives the superheating field Hsh = (1−n)H p
for the lower bound of field penetration into a finite
superconducting sample.

Criticality can be tuned by temperature variation of
κ(T ) = λ(T )/ξ(T ). In a Pb superconductor κ(T ) changes
from κ(0)≈0.68 at T =0, which is slightly less than κc, to κ'0.38
at T = Tc(7.2 K) and is well described by the phenomenological
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Figure 5 | Magnetization curves showing vortex droplet fission. a,b, ExperimentalM(H) curves at 6.7 K (a) and 7.0 K (b). The applied magnetic field is
normalized by Hc(T)=Hc(0)[1−(T/Tc)2], with Hc(0)=78mT and Tc=7.18K. a.u., arbitrary units. On increasing field (red curves) the Meissner state
(N=0) survives up to Hc'Hsh. On decreasing field (blue curves), the Nq-vortex droplet undergoes sequential Rayleigh decay (black arrows). The green
curves show the full stability ranges of the droplet states, obtained by reversing the field sweep direction.

formula κ(T )'κ(0)/(1+T 2/T 2
c ) (see ref. 15 and Fig. 3b).

Therefore, micrometre-sized samples of Pb, an exemplary type I
superconductor, offer a natural laboratory to study vortex droplet
fission.We selected a triangular-shaped Pbmeso-crystal with lateral
side dimensions of ∼2.2 µm, thickness of ∼0.7 µm, and critical
temperature Tc= 7.18 K shown in the lower inset of Fig. 3a. The
measurements on the crystal were done using a two-dimensional
(2D) electron gas ballistic Hall micro-probe arraymagnetometer16,17
(see Fig. 3a lower inset). The temperature variation of κ gives rise
to the phase diagram of Pb shown in Fig. 3c. The temperature
dependence for Hc is standard, Hc(T ) = Hc(0)[1 − (T/Tc)

2
]

with µ0Hc(0)≈ 78 mT (ref. 18). The critical fields Hsh and Hc3
are expressed through Hc as given above with the best-fit value
n = 0.37. The curves for Hc, Hsh and Hc3 cross pair-wise near
approximately Tx ' 6.3 K. The dotted lines show the instability
field Hinst(N ) for various N calculated from equation (5). We
further focus on the temperature region Tx < T < Tc, which is
the most favourable for the experimental observation of Rayleigh
instability of the vortex droplet. At T<T x the lines Hinst(N ) for
large N fall out from the range of existence of superconductivity,
implying that there the droplet may become unstable with respect
to splitting into single vortices. Our 3D numerical simulations,
done using the phenomenologically adapted Ginzburg–Landau
theory to account for the correct temperature dependence of κ and
Hc (ref. 19), show the intermediate regime with a mixture of droplet
and one-quanta vortices (see Fig. 4). Note that in the temperature
range Tx<T <Tc where Hc3<Hc<Hsh, the droplet can form only
in the descending field regime, because in the ascending field the
sample remains in the Meissner state until the field reaches Hsh at
which superconductivity vanishes.

The temperature dependencies of Hc, Hsh and Hc3 shown in
Fig. 3c are in a good agreement with those of Fig. 3a obtained
experimentally. The data were extracted from field-dependent
magnetization curves as shown in the upper inset of Fig. 3a.
From Hsh and Hc one obtains the temperature dependence of the
Ginzburg–Landau parameter κ(T ) through Hp. The temperature
dependence of the Ginzburg–Landau parameter κ(T )=λ(T )/ξ(T )
corresponds to the bulk behaviour (shown in Fig. 3b). Together
with Hc(T ) this gives a penetration λ(T )≈ λ(0)/[1− (T/Tc)

2
]

with λ(0) ≈ 41 nm and a zero temperature coherence length
ξ(0)≈ 66 nm. To see the droplet fission, we use the individual
vortex observation technique, analogous to that used in ref. 16 for
observation of entrance and exit of individual vortices in small
type II superconductors. The M(H) dependencies at T = 2K and
at T = 6.7 K shown in the insets of Fig. 3b and Fig. 3d have a

different character, the difference stemming from the temperature
dependence of κ(T ).

At T = 2K, where κ ' 0.6–0.7 and is slightly less than κc, the
lower inset of Fig. 3b delineates the mixed-state-like behaviour
of M(H) in which the individual vortices are stabilized by the
repulsion due to the stray field. First, on increasing the applied field
to Hsh'51mT from the zero-field-cooled state, the absolute value
of the magnetization grows proportionally to H owing to Meissner
screening. Beyond Hsh, the magnetic flux starts to penetrate the
sample and themagnetization decreases smoothly. An extrapolation
of the linear drop of the absolute value of M(H) to zero agrees
with the bulk value Hc' 71mT, but the diamagnetic signature of
superconductivity disappears only at H =Hc3' 96mT (Fig. 3a,b).
At the reversing branch, the onset of the transition is observed at
H ≈Hc3 but the magnetization remains close to zero, as long as
the magnetic flux can freely leave the sample. On further change of
H , the magnetization becomes modulated by a saw-like structure,
which reflects the effect of pinning that traps vortices within the
sample. The drops inM(H) dependence correspond to the one-by-
one escape of vortices from the sample, similar to what is observed
in refs 16,20. On switching the sign of the field, vortices leave the
sample, which finally falls into the Meissner state and the process
repeats itself cyclically.

The fullM(H) curve at T =6.7 K, shown in the inset of Fig. 3d,
is exemplary for the single droplet regime at Tx<T<Tc whereHc3,
Hc<Hsh are close to each other and where by tuning the field we
can control the vortex droplet fission. An expanded view of one
quadrant of the data is shown in Fig. 5 for T =6.7 K and 7.0 K. On
the ascending field at T = 6.7 K, the Meissner state is maintained
up to Hsh. At H=H sh the magnetization abruptly drops to zero.
Moving from high field along the descending branch, one sees that
superconductivity emerges at Hc3(T ), but the system falls into a
vortex droplet state.

After formation of superconductivity, M(H) at the descending
branch follows the envelope shape 4πM = (n−1 − 1)(H–Hc)

modulated by the single quantum jumps due to one-by-one escape
of vortices from the sample. Deviation from this dependence starts
atH=0.85Hc marking the transition of the intermediate state to the
metastable regime of the vortex droplet containing N =5 bounded
vortices. On further field reduction, the disintegration of the droplet
follows the scenario of instability, governed by equation (5). We
marked experimentally observed values of Hinst(N ) for N = 5, 4, 3
and 2 on the theoretical phase diagram in Fig. 3d by filled red dots.
The data show a perfect agreement with theoretical predictions.
The final two-quanta jump corresponds to disappearance of the
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last 2-quanta droplet: the last 2q vortex droplet splits symmetrically
so that both vortices leave the sample simultaneously. A similar
behaviour is observed in the T = 7.0 K data (Fig. 5b), where the
maximumquantumnumber isN =3. Besides, nearTc the coherence
and screening lengths become comparable to the size of the sample,
and the proposed theory applies only marginally. Thus, although, in
general, the observations are consistent with the theoretical phase
diagram of Fig. 3c,d, the experimental points appear slightly off the
theoretical instability curves.

Methods
Micrometre-sized lead superconducting crystals were grown on a highly oriented
pyrolytic graphite substrate synthesized using an electrochemical process, which
we developed earlier21. By carefully selecting the electrodeposition parameters, we
can grow a plethora of 3D-shaped mesoscopic Pb superconductors with various
geometries such as pyramids, pentagons, needles and brushes.
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