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Abstract Quantum systems are notoriously difficult to simulate with classical means.
Recently, the idea of using another quantum system—which is experimentally more
controllable—as a simulator for the original problem has gained significant momen-
tum. Amongst the experimental platforms studied as quantum simulators, supercon-
ducting qubits are one of the most promising, due to relative straightforward scalability,
easy design, and integration with standard electronics. Here I review the recent state-
of-the art in the field and the prospects for simulating systems ranging from relativistic
quantum fields to quantum many-body systems.

Keywords Josephson devices · Digital and analog quantum simulation · Many-body
systems · Quantum fields · Circuit QED

1 Introduction

The idea of extracting information about one quantum system by mathematically map-
ping it to another one which is more easily accessible goes back to Feynman [1] and
Deutsch [2]. The development of the field of quantum simulation is intertwined with
that of quantum computing, since from the beginning quantum simulation was envi-
sioned as the main application of a quantum computer. A universal quantum computer
would be able to efficiently simulate the dynamics of quantum systems, provided
that the Hamiltonian is built up from local interactions [3]. Powerful mathematical
results such as the threshold theorem and quantum error-correcting codes suggest that
quantum processors can be made robust against noise and imperfections—therefore
fault-tolerant quantum computing is in principle possible [4]. The threshold theorem
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shows that running a quantum algorithm with a finite probability of error can be
done on a hardware with noisy or faulty components, provided that the probability
of failing for each component remains below a threshold value. This demonstrates
that it is possible to prevent the accumulation and propagation of errors when running
a quantum algorithm. However, the requirements set by the threshold theorem and
the overhead in the number of qubits for error corrections for realizing a quantum
processor are a tall order for the applied physicist. In spite of significant advances
on the experimental front, it has been gradually realized that progress in the direc-
tion of gate-based universal quantum computing is probably going to be a long-term
effort [5]. As a response to this challenges, the field of quantum simulations proposes
a more pragmatic strategy: one searches for problems in quantum physics that can
be mapped onto another mathematical model, which in turn can be straightforwardly
implemented with the existing hardware. It is hoped that the requirements for simulat-
ing these models efficiently and accurately might not be so drastic. As shown in this
review, quantum physics offers a plethora of difficult and important problems that are
amenable to this approach. The appeal of the field of quantum simulations is twofold:
first, it is hoped that quantum simulators might provide a route towards efficient solv-
ing of problems and models which are difficult to implement on classical computers;
second, they illuminate powerful and scientifically fertile analogies and mathematical
mappings between seemingly unrelated phenomena, ranging from solid-state physics
and chemistry to particle physics and cosmology.

A variety of systems (trapped ions, atoms in optical lattices, polar molecules, quan-
tum dots, nuclear spins, superconducting circuits etc.) have been recognized as promis-
ing candidates for quantum simulation [6–11]. Not surprisingly, these systems are the
same as those envisioned for the implementation of quantum computers. The field
of simulations thus has a start-up advantage, being able to heavily capitalize on the
technological advances in coherence time, addressability, tunability etc. achieved by
the various implementations of few-qubits quantum processors.

In the case of superconducting circuits and qubits, there have been remarkable
technical achievements in design, fabrication, operation, and measuring techniques
[12–18]. Superconducting qubits are mesoscopic element circuits that behave like
artificial atoms, having quantized energy levels which can be excited by microwave
fields. While in the case of atom/ion-based qubits the energy levels are due to the
motion of electrons around the nucleus, in the case of superconducting qubits the
energy levels are created by the collective motion of electrons in the superconduc-
tor and through Josephson links, either as electron plasma oscillations (charge qubit,
transmon, quantronium) or as persistent currents (phase qubit, flux qubit). Differently
from atom/ion- based qubits, the superconducting qubits interact strongly with elec-
tromagnetic fields, which is both a blessing (e.g. reaching the strong coupling limit
of cavity QED is easy) and a curse—since the undesired interaction with the electro-
magnetic modes of the environment result in shorter decoherence times. There exists
already a quite large toolbox of techniques available for the experimentalist working
with these circuits. The qubits can be coupled capacitively or inductively, by the design
of the circuit. The interaction between qubits can be tuned by applying pulses that put
the qubits on- and off- resonance [19,20], by using a third off-resonant qubit or res-
onator [21,22], by employing specially-designed current-controlled coupling circuits
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[23], or by using the sidebands resulting from applying microwaves [24–28]. A lot of
progress has been done in the use of novel measurement techniques, either specific
to the physics of Josephson junctions (e.g. switching techniques [29–34]) or inspired
from quantum optics (e.g. homodyne measurements [35,36]). Various extensions of
these methods include partial and interaction-free measurements [37–42], single-shot
measurements using the cavity at large photon numbers [43] and bifurcation amplifiers
[44], and measurement feedback enabled by the use of parametric amplifiers [45–48].

A convenient classification of simulators is into analog and digital, depending on
weather the time evolution of the simulator is continuous in time or, respectively, in
discrete steps (stroboscopic). The digital version uses the standard model of quantum
circuits based on quantum gates. The simulation of dynamical evolution discussed
below is an example of digital simulation. The technical difficulty of this approach
is thus the same as generally with quantum computing (the need of large number of
well-controlled gates) and the bounds on decoherence, fidelities of state preparation,
gate errors, and measurement errors are set by the overall desired precision of the
calculation; they can be improved by the usual techniques of quantum error correction
and fault tolerance. The analog version is the emulation of the system under inves-
tigation by another quantum system, realizing the same physics or a mathematically
equivalent form of it using continuously-tunable parameters in a better controlled
setup. The analog quantum simulators realized with superconducting circuit elements
can be alternatively seen as realizations of quantum metamaterials with externally-
adjustable material characteristics [49,50]. So far, there are two main categories of
devices that can be subscribed to the class of analog simulators: the first are adiabatic
and quantum annealing simulators, while the second class is that of quantum hard-
ware emulators. The first class realizes a form of quantum computation based on the
adiabatic theorem—a system with parameters slowly changing in time will stay in the
ground state. The idea is to access nontrivial many-body ground states by starting in
a known simple ground state and varying the parameters of the quantum processor
Hamiltonian [51]. The second class of analog simulators are essentially dedicated
devices designed to solve a challenging problem by recreating the same physics in
a simpler, easily-accessible, or more precisely controlled experiment. For hardware
emulators there is no threshold theorem and no general error correction techniques are
known: the effect of decoherence, measurement fidelities, etc. has to be studied for
each simulator separately. How to characterize the efficiency and reliability against
imperfections of analog simulators is an open theoretical issue. The niche for analog
quantum simulators might be an intermediate regime of noise—where the noise level
is too large for fault-tolerant universal quantum computing, but still small enough to
outperform classical computers [10]. With the levels of decoherence being constantly
reduced over the last decade, superconducting devices and circuits are excellent can-
didates for analog quantum simulators.

In this review I will not follow the digital/analog classification—instead, the sim-
ulators are categorized according to the problem they can solve or to the system they
are meant to emulate. From simulations of gauge fields in lattices to condensed matter
systems such as frustrated spins and spin liquids, one may expect that novel phases of
matter can be discovered and new insights can be gained about the physics of these
systems.
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2 Digital Simulators of Dynamical Evolution

The first demonstration that the quantum simulation of the dynamics of a manybody
system can be more efficient than the classical computer simulation is due to Lloyd
[3]. He showed that the dynamics of a quantum many-body system can be simu-
lated by slicing the time evolution into a sequence of operations realized with local
Hamiltonians. Suppose the total Hamiltonian can be written as

H =
N∑

k=1

Hk, (1)

where Hk are local Hamiltonians. For example, for the quantum Heisenberg model
H = − 1

2

∑N
j=1(Jxσ

x
j σ

x
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y
j σ

y
j+1 + Jzσ

z
j σ

z
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j ), where Jx,y,z are inter-
action (coupling) constants and h is the external magnetic field. In this case, the Hk’s
are the interactions between two nearby lattice spins j and j + 1, σ x

j σ
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j+1, σ y

j σ
y
j+1,

as well as the single-spin Pauli operators σ z
j . Then, the evolution of the system under

H can be approximated as

e
i
h̄ Ht ≈

(
e

i
h̄ H1t/ne

i
h̄ H2t/n . . . e

i
h̄ HN t/n

)n
. (2)

where the error can be made as small as needed by taking a large enough number
of steps n. This result follows in a similar way as the two-operator Trotter formula,
limn→∞(ei At/nei Bt/n)n = ei(A+B)t [52,53]. It is important to note that this expansion
holds even if H1, H2, ..., Hn do not commute.

The expansion Eq. (2) makes the simulation efficient because now each of the opera-
tors Hk acts on a reduced Hilbert space. For example, for the quantum 1D Heisenberg
model defined on N sites as above, the single-qubit terms act on a 2-dimensional
Hilbert space, while the interaction terms act on a 4-dimensional Hilbert space. The
simulation of the evolution operators exp( i

h̄ Hkt/n) is given by the number of entries
when these operators are written in matrix form, and it is 4 for single-qubit terms and
16 for two-qubit terms. The total number of operations in the simulation is therefore
≈ nN (4 + 3 × 16) = 52nN , with n here controlling the error—the larger n the
smaller the error. Contrast this with the case of a classical simulation of the same
problem where, in order to directly calculate the evolution exp(− i

h̄ Ht), one needs to

exponentiate a 2N × 2N matrix.
It is in principle possible to realize this type of digital quantum simulation by using

superconducting circuits. All the needed components exist, and implementations of
quantum gates have been already demonstrated with various types of superconducting
qubits [54–57]. Specific constructions for the gate sequence implementing the Trot-
ter decomposition have been constructed for a chain of transmons (all coupled to a
resonator) that can simulate the Heisenberg and frustrated Ising models with two and
three spins [58]. In general, a high accuracy would require the use of fault-tolerant
error correction; this raises the delicate question of the amount of resources needed,
which unfortunately tend to grow exponentially with the degree of precision we wish

123



J Low Temp Phys (2014) 175:633–654 637

to impose [59]. However, if the requirements on precision are not too strong, the digi-
tal simulation might still perform better than the classical computation, especially for
large number of spins.

3 Single-Qubit Simulators

One usually thinks of a simulator as a system consisting of many quantum-level
components (artificial atoms), but it is possible to take a minimalist approach and
attempt to use a single artificial atom as a simulator. Several interesting experiments
have already been done by following this strategy.

3.1 Simulating a Large Spin with a Multilevel Artificial Atom

Multilevel systems are interesting due to effects such as electromagnetically induced
transparency, coherent population trapping, and the Autler-Townes effect. These
effects have been already demonstrated experimentally with superconducting qubits
[60–63]. Multilevel systems can also be operated as quantum simulators of large spins.
To emulate a spin s, one needs a 2s+1 dimensional Hilbert space on which a basis is
defined as {|s,m〉} with m = −s,−s+1, ..., s. Thus a quantum system with d = 2s+1
degrees of freedom is suitable. This allows the analog simulation of the dynamics of
spins with different quantum numbers (spin-1/2, 1, and 3/2) by employing the first five
levels of a phase qubit [64]. For example, a spin-1/2 is emulated by using two levels,
a spin-1 by using 3 levels, and a spin-3/2 by using 4 levels. In this way one can study
the quantum dynamics of large spins as well as the associated geometric phases.

More precisely, the experiment [64] relies on the analogy between the Hamiltonian
of a multilevel system coupled to an external field and the generators of rotation around
the x-direction for the s-spin. Any superconducting qubit is a multilevel system; when
this system interacts with microwaves, the Hamiltonian is of the generic form

H =
∑

n

En|n >< n| + h̄
∑

n

gn(t) [|n + 1 >< n| + |n >< n + 1|] , (3)

where gn(t) = ∑
m gn,m cos(ωmt) contains all the m components of the applied

microwave tone, which couple to the qubit’s transitions n → n + 1 with strengths
gn,m . The Schrödinger equation i h̄(d/dt)|ψ(t)〉 = H |ψ(t)〉 can be most eas-
ily solved in a multiple-rotating frame defined by a unitary U (t), where it reads
i h̄(d/dt)|ψ̃(t)〉 = H̃ |ψ̃(t)〉, with |ψ̃(t)〉 = U †(t)|ψ〉 and H̃(t) = U †(t)H(t)U (t)+
i h̄(dU †(t)/dt)U (t). If we now take

U (t) = e− i
h̄

∑
n Ent |n><n|, (4)

and take each of the tones m exactly resonant to a transition n → n +1, by performing
a rotating wave approximation we get [65]
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H̃eff =
∑

n=0

h̄gn,n

2
[|n >< n + 1| + |n + 1 >< n|], (5)

where gn,n are the Rabi frequencies between consecutive transitions. The phase factors
of the microwave field can be included as well in this calculation. Here we have
assumed that we can neglect oscillating terms of the type gn,m exp[−iωmt + i(En+1 −
En)t/h̄)]|n + 1 >< n| if m �= n. This approximation is not valid in general and these
cross-coupling terms can produce measurable effects [66].

On the other hand, the generators of rotation around the x and y -direction for
spin-1/2, spin-1, and spin-3/2 are as follows:

σx =
(

0 1
1 0

)
; σy =

(
0 −i
i 0

)
, (6)
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2
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⎝
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⎞
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2

⎛

⎝
0 −i 0
i 0 −i
0 i 0

⎞

⎠ , (7)
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3 0 2 0

0 2 0
√

3
0 0

√
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⎞

⎟⎟⎠ ; J (3/2)y = 1
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⎛

⎜⎜⎝
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√

3 0 0
i
√

3 0 −2i 0
0 2i 0 −i

√
3

0 0 i
√

3 0

⎞

⎟⎟⎠ . (8)

Thus, rotations around the x and y-axes can be realized simply by externally-
controlled microwave fields, resulting in a time-dependent gn,n .

3.2 Simulating Effects in Noninteracting Many-Body Systems

In his foundational paper for the field of quantum simulation [3], Lloyd noticed that,
while for quantum computing decoherence is a liability, in the case of quantum simu-
lation it can be used as an asset. Indeed, since the simulated system is itself embedded
in some environment, the easiest way to mimick its dynamics is by using an open
system with known or controlled decoherence. For example, for a system of nuclear
spins characterized by frequency ωsys, decay time Tsys,1 and decoherence time Tsys,2,
it is enough to use as simulator a two-level system with corresponding parameters ω0,
T1, and T2, such that ωsys/ω0 = T1/Tsys,1 = T2/Tsys,2. In this way, the quantum state
of the spin at the moment t is reproduced in the simulator at a time tωsys/ω0.

This general idea has been realized in a recent experiment [67] simulating an effect
known especially in nuclear magnetic resonance (NMR) as motional averaging and
narrowing. Atoms in materials can experience a different chemical environment in
different regions of space, and due to their thermal energy they can randomly move in
and out of these regions. In NMR experiments, this effect is typically studied by raising
the temperature of the sample, thus accelerating the random motion of the atoms. Such
a noninteracting ensemble of atoms can be simulated with only one qubit simply by
dividing the total measurement time into time bins and emulating one atom in each of
the bins. The effect of the random chemical potential has been emulated by randomly
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modulating the transition frequency [67]. The Hamiltonian for this simulator is

H = h̄

2

[
ω0 + ξ(t)σz

] + h̄g cos(ωt)σx , (9)

where ξ(t) is a random variable with units of frequency, taking the values ±ξ and
satisfying the time-correlations

〈ξ(t)ξ(t + τ)〉ξ = ξ2e−2χτ , (10)

where χ is the characteristic inverse-time switching scale and the last term in Eq. (9)
is the drive. Dissipation is introduced in the simulator as a Lindblad superoperator.
Thus, in this experiment ensemble averages are mapped into time averages over the
measurement periods, the temperature corresponds to the inverse switching time χ ,
the values of the chemical potentials in the two regions of space correspond to ±ξ , and
the Larmor frequency of the nuclear spins ωsys and the times Tsys,1, Tsys,2 are mapped
respectively into the qubit as ω0 and relaxation and dephasing times T1, T2.

4 Simulators of Relativistic Fields and Effects

To observe analog relativistic effects such as Klein tunneling and Zitterbewegung in
1+1 dimensions is relatively simple: one needs a two-level systems and a continuous
degree of freedom. A simple qubit-resonator circuit such as the one used for trans-
mons can be used [68]. A more difficult problem is solving problems in interacting
relativistic quantum fields, and various systems have been proposed as simulators.
The implementation of non-Abelian gauge theories with Josephson arrays has been
discussed in Ref. [69]. A new quantum algorithm for digital simulation of relativis-
tic scattering processes for massive field theories with �4 self-interaction has been
recently proposed [70].

4.1 The Massless Klein–Gordon Field with Tunable Speed of Propagation or
Boundary Conditions: The Dynamical Casimir Effect and the Hawking Effect

If an array of SQUIDs is used as the signal line of a coplanar waveguide transmission
line [71], the Lagrangian density takes the form of the Klein–Gordon massless field,

L[∂tϕ, ∂xϕ] = C

2
(∂tϕ)

2 − 1

2L
(∂xϕ)

2, (11)

where ϕ = ϕ(x, t) is the flux variable along the array, and C and L are the capacitance
with respect to the ground per unit length and, respectively, the inductance per unit
length. This yields the massless Klein–Gordon equation in 1+1 dimensions,

�ϕ = 0, (12)
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where the d’Alembert operator in 1+1 dimensions is � = c−2∂2/∂t2 − ∂2/∂x2, with
c = 1/

√
LC the propagation speed. Now, by using an external magnetic field, it is

possible to make the inductance per unit length L dependent on both space and time,
L(x, t). This makes also the speed c dependent on space and time c = c(x, t).

There are two ways of using this externally-controlled time- and space- dependence
of the speed c to create interesting effects:

i) The first option is to keep the time-dependence in a well-defined region of space,
that is, c(x, t) is varied in a fixed space interval defined on the sample by the
proximity of a bias coil. This gives rise to the dynamical Casimir effect. In the
dynamical Casimir effect, the change of the speed c can be realized over a length
either much smaller or of the same order as the wavelength. If it is realized over a
length much smaller than the wavelength of the field, the process can be assimilated
to a modulation a boundary condition [72]. If the change is realized over a length
of the same order as the wavelength, the process can be regarded as a modulation
of the index of refraction [71].

ii) The second option is to have the space region over which c is varied moving along
the chain. This can be used to produce an analog of the Hawking effect, described
in more detail later in this subsection.

The dynamical Casimir effect is a process by which the vacuum fluctuations of a
field are transformed into real particles (typically photons) by the action of an exter-
nal modulation. This modulation changes a parameter entering the Euler-Lagrange
equations (or in the Hamiltonian) of the system. The reason why this change creates
particles is very general, and can be understood as follows: any quantum system (in
general any quantum field) has a structure of energy levels as given by solving the
field equations. The ground state is by definition the lowest-energy state, to which we
associate a zero number of particles. If one now changes the structure of the energy
levels by modifying a parameter in the Hamiltonian or Lagrangian, the new ground
state will be in general different from the initial one. By expanding the new ground
state in the old basis, one can see that the new ground state, as seen from the point of
view of the initial system, has components with a non-zero number of particles. The
main experimental challenge to realizing the dynamical Casimir effect is that, in order
to get a significant number of particles created, the parametric modulation should be
nonadiabatic when compared to the energy level separation of the unperturbed system.
Fast changes in materials and Josephson devices embedded in electromagnetic cavities
are particularly suited for this task, and early proposals have exploited precisely these
properties [73–75].

These processes can be implemented in superconducting circuits by modulating
the inductance per unit length and thus the speed of light in SQUID-based arrays,
realizing the first option i) mentioned above. In the dynamical Casimir experiment
that uses modulation of the index of refraction [71], photons were generated at two
frequencies that sum up to the pump (modulation) frequency. To measure the outgoing
radiation the SQUID array was coupled into a transmission line by using a low-
dissipation capacitor with vacuum gap fabricated with FIB (focused ion beam) [71].
This formed a cavity with a quality factor Q = 50–100 and a resonant frequency
tunable by an external magnetic field. The device was pumped at 10.8 GHz and the
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photons created by the dynamical Casimir effect were created at a frequency around
5.4 GHz. By examining the covariance matrix extracted from the experimental data
and employing standard criteria of non-separability for continuous variables, it was
possible to prove that the photons created by the dynamical Casimir effect are in a
non-separable two-mode squeezed state, as expected from theoretical considerations.
In general, these correlations can be harvested and propagated further to other parts
of a superconducting quantum circuit [76,77].

The dynamical Casimir effect can be realized also with the single-qubit simulators
discussed in the previous section. One notices that the minimal requirements of realiz-
ing an emulation of the dynamical Casimir effect is to have a harmonic oscillator with
a fast-tunable potential. With superconducting circuits, this can be done for example
by using a double-SQUID where the shape of the landscape of potential energy of the
circuit can be changed very fast by using rapid single flux quanta techniques [78].

The next important effect, considered to be a cornerstone of our understanding of
quantum physics in the presence of gravitation, is the Hawking effect. The simulation
of the Hawking effect has been proposed using a SQUID array where the speed of
light is modulated by a pulse propagating at the speed u in a nearby bias line [79],
corresponding to the second option ii) mentioned above. This means that the speed
of the microwave photons in the SQUID array has a dependence both on time t and
coordinate x along the array, of the form c(x − ut). In the co-moving coordinates
associated to the frame moving with speed u, this results in the field equation

1√−geff
∂μ

(
gμνeff

√−geff∂νϕ
) = 0, (13)

where gμνeff is an effective metric

gμνeff = 1

c2

(
1 −u

−u u2 − c2

)
, (14)

and geff = Det[gμνeff ]. One now recognizes that Eq. (13) is the standard way of writing
the Klein–Gordon equation in a curved spacetime, and that the metric gμνeff is analogous
to the one obtained for massive non-rotating bodies in Painlevé-Gullstrand coordinates.
The event horizon h is formed whenever |c(x−ut)| = |u|, and, in the laboratory frame,
it moves together with the pulse. Radiation of photons by the Hawking effect is then
expected at the horizon. Note that the Hawking effect is a purely kinematic effect,
thus it does not depend on the specific physical mechanism that produces the event
horizon.

The equivalent surface gravity for this experiment is

gh = ch

∣∣∣∣
∂c

∂x

∣∣∣∣
h
, (15)

where c is the speed of light and the index h stands for horizon, defined as the point
where |u| = |c(x − ut)|, where u is the propagation speed of the pulse. The surface
gravity has dimensions of acceleration—which justifies its name as an analog surface
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gravity, and the relation between the surface gravity at the horizon and Hawking’s
temperature is

kBTHawking = h̄

2πch
gh . (16)

The ratio between the surface gravity and the speed of light at the horizon is a frequency,
and this is the quantity that governs the Hawking process. In this proposed experiment
it would be possible to create a Hawking temperature above 100 mK, enough to be
detected. Let us assume that the speed of light is changed by a factor of 20 % over a
distance of the order of mm: this yields gh ≈ 1019 m/s2, which results in a detectable
Hawking radiation corresponding to a detectable value of 100 mK. Note that this
experiment would create an effective gravitational acceleration 18 orders of magnitude
larger than the gravitational acceleration at the surface of the Earth! It corresponds to
a “miniature” black hole with a Schwarzschild radius of about 1.5 mm and a mass of
1024 kg. These incredibly large numbers simply mean that, being so much stronger,
electromagnetic fields are much more effective than gravitation in generating quantum
effects based on vacuum fluctuations.

4.2 Toward Relativistic Quantum Information

The idea of simulating cosmological phenomena in the laboratory, especially in sys-
tems such as atomic Bose-Einstein condensates and superfluid He has been around
for some time [80,81], and superconducting circuits are an important recent system
suitable for such experiments [82].

To illustrate the potential of superconducting circuits for relativistic and cosmolog-
ical effects, consider for example the Unruh effect. The prediction is that the ground
state of a field seen from a frame moving in the Minkowski vacuum with acceler-
ation aUnruh with respect to a stationary (laboratory) frame is a thermal state with
temperature

kBTUnruh = h̄

2πc
aUnruh, (17)

in other words a detector that moves with acceleration in empty space will detect parti-
cles. Note that Unruh’s and Hawking’s expressions for the temperature Eqs. (16,17) are
identical, with the noninertial acceleration aUnruh replaced by the gravitational acceler-
ation gh , as expected from the equivalence principle of general relativity. As in the case
of Hawking’s effect, an immediate estimation shows that in order to detect a tempera-
ture of 100 mK one needs to move the detector with an acceleration aUnruh ≈ 1019 m/s2.
Achieving such accelerations in the lab with real detectors is technically unrealistic.
But consider now what happens when we look at the displacement of the electromag-
netic field modes that are achieved in the dynamical Casimir effect experiment. Let
us say that the amplitude of the displacement achieved in a chain of SQUIDs is of the
order of 1 mm, and the modulation frequency is of the order of 10 GHz. This results in
a maximum velocity of 2π ×107 m/s and a maximum acceleration of ≈ 4×1018 m/s.
The maximum velocity thus can reach values comparable or even above that of the
speed of microwaves in coaxial cables and transmission lines. This opens the way to
realizing causally-disconnected (space-like separated) experiments. The accelerations
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obtained are close to the acceleration required to get an Unruh temperature well above
that of a typical dilution refrigerator (20 mK).

These experiments demonstrate the potential of superconducting quantum circuits
to serve as a platform for simulating effects from cosmology and quantum field the-
ory. One can go one step further and study how quantum-information protocols are to
be modified at relativistic speeds and accelerations, as well as in curved spacetimes,
an emerging line of research often referred to as relativistic quantum information.
That the combination of gravitation and information concepts is fruitful has been
famously demonstrated by Bekenstein’s discovery of the entropy of black holes [83].
This concept was further deepened through the discussions of the black hole informa-
tion paradox [84], and more recently through the so-called AMPS paradox [85] (c.f.
Ref. [86]), the latter establishing a contradiction between the quantum-information
principle of monogamy of entanglement (taken together with the standard theory
black hole formation and evaporation) and the equivalence principle.

With superconducting circuits, one can experimentally study standard quantum-
information tasks performed with the usual Alice, Bob, and Eve—this time in rela-
tivistic motion. This is enabled by the fact that with quantum circuits one can displace
a cavity by using fast-modulated boundary conditions. For example, one can study
the degradation of fidelity in quantum teleportation between Alice and Bob due to the
nonuniform acceleration of Bob [87]. Since it has been already experimentally proven
that two-mode entanglement is generated by the dynamical Casimir effect [71], it is
natural to extend this idea to multi-mode cavities. In this case, continuous-variable
cluster states can be produced, which can be used as a resource to implement a well-
known measurement-based (“one-way”) model of quantum computing [88]. Specific
protocols for generating for example quadripartite square cluster states, by using fast
changes in the boundary conditions, have been developed [89].

4.3 Lattice Gauge Fields

The simulation of lattice models for quantum field theory is of great interest since
these models have been studied for a long time already on classical computers. The
reason for introducing the lattice is that it allows to perform numerical calculations
for strongly-coupled theories.

The massless noninteracting Dirac field can be mapped onto the antiferromagnetic
XY model of spins by a Jordan–Wigner transformation; in turn, this chain can be
simulated by superconducting qubits. However, the difficult and interesting problem
that a simulator could solve is the massive and strongly interacting case. One such
1-dimensional model for quantum electrodynamics is due to Schwinger; the model
can be discretized to a lattice [90]. In this lattice version, the Hamiltonian is

HSchwinger = −J
∑

l

(
ψ

†
l S+

l,l+1ψl+1 + ψ
†
l+1S−

l,l+1ψl

)

+m
∑

l

(−1)lψ†
l ψl + g

∑

l

(
Sz

l,l+1

)2
, (18)
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Here ψl is a fermionic operator (spinless), S is a spin operator, and its z component
Sz

l,l+1 describes an electric field between the sites l and l + 1. The first term in Eq.
(18) is kinetic energy, with the hopping of the fermions being accompanied by a flip
in the electric field. The second term is a mass (gap) energy term corresponding to the
additional energy required to create pairs of particles and antiparticles, and the last term
is the analog of the electric energy. One can now apply two standard transformations
[91], with the goal of mapping the Hamiltonian Eq. (18) into a form that is readily
implementable with superconducting circuit elements. For the fermionic field, one can
use the Jordan–Wigner transform

ψl = exp

[
−i
π

2

∑

m<l

(σ z
m + 1)

]
, (19)

and for the spins S one can employ the Schwinger two-mode representation,

Sz
l,l+1 = 1

2
(a†

l al − b†
l+1bl+1); (20)

S+
l,l+1 = a†

l bl+1; (21)

S−
l,l+1 = b†

l+1al . (22)

With these transformations, Eq. (18) becomes

HSchwinger = −J
∑

l

(
σ

†
l a†

l bl+1σ
−
l+1 + h.c.

)

+g

4

∑

l

(a†
l al − b†

l+1bl+1)
2 + m

2

∑

l

(−1)lσ z
l . (23)

This form of the Hamiltonian is now amenable to simulation by a Josephson circuit
designed as a one-dimensional lattice of qubits with the links between them consisting
of two coupled nonlinear oscillators [91].

5 Simulators of Interacting Many-Body Systems

Interacting many-body problems appear in a variety of contexts in chemistry and
solid state physics (quantum phase transitions, superconductivity, quantum mag-
netism). Below we focus on a few paradigmatic examples that can be solved using
superconducting-circuit simulators.

5.1 Simulation of the Anderson and Kondo Models

The Anderson model describes conduction electrons coupled to an impurity. The
starting point for simulating this model is the bosonic Hamiltonian
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HAnderson = −J
∑

i≥1

(
a†

i+1σaiσ + h.c.
)

− t
∑

σ

(
a†

0σa1σ + h.c.
)

+E(n0↑, n0↓)+
∑

i,σ

μiσniσ . (24)

This type of Hamiltonian can be realized as a semi-infinite double array of supercon-
ducting islands [93], with excess Cooper pair numbers on an island niσ , where σ is the
index of the array and the islands are counted by i = 0, 1, 2.... Here J is the Joseph-
son energy between junctions everywhere on the array except near the impurity, where
it is denoted by t ; the energy E(n0↑, n0↓) is the electrostatic (capacitive) interaction
energy between the “impurity” islands i = 0, andμi are chemical potentials produced
by voltages that have the effect of moving the islands from the degeneracy points.

Using now a version of the Jordan–Wigner transform that maps bosons to fermions,
we can write

ai↑ = ci↑(−1)
∑

j<i n j↑, (25)

ai↓ = ci↓(−1)
∑

j<i n j↓+N↑ , (26)

niσ = c†
iσ ciσ = a†

iσaiσ , (27)

where ciσ are fermionic operators and Nσ = ∑
i niσ . This allows us to write the

Hamiltonian Eq. (24) of the superconducting circuit simulator described above in a
mathematically equivalent form

HAnderson = −J
∑

i≥1

(
c†

i+1σ ciσ + h.c.
)

− t
∑

σ

(
c†

0σ c1σ + h.c.
)

+E(n0↑, n0↓)+
∑

i,σ

μiσniσ . (28)

This is the well-known Anderson model [92] for hopping electrons with an impurity
at i = 0. The Kondo model, either single-channel or two-channel, can be obtained
using similar ideas [93]. A different protocol for simulating Anderson localization can
be obtained by implementing a quantum random walk on a lattice with two supercon-
ducting qubits per lattice site [94].

5.2 Jaynes–Cummings Lattices: Simulation of Bose-Hubbard and Polaron Models

A straigthforward simulator can be obtained by coupling cavities containing qubits
in an array, thus realizing the physics of the Bose-Hubbard model with microwave
photons—but with the additional caveat of dissipation and thus the necessity of con-
tinuous external driving. Several many-body effects with photons have been proposed
in such systems based on photon blockade [95–97], most notably the realization of
a photonic equivalent of the Mott insulator-superfluid transition [98] and the appear-
ance of photon solid phases when the cavity-cavity coupling is nonlinear [99]. With
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superconducting circuits, the standard unit in such a lattice is the transmon-resonator
circuit [100], where either the resonators or the qubits are coupled.

If the lattice is formed by coupling only the resonators, the Hamiltonian reads

H =
∑

j

H JC
j −

∑

j

J (a†
j a j+1 + a†

j a j+1), (29)

where H JC
j is the Jaynes–Cummings Hamiltonian of each cavity,

H JC
j = h̄ωr a†

j a j + h̄ω j

2
σ z

j + h̄g(a†σ−
j + σ+

j a), (30)

and J is the coupling between the resonators.
Recently the dissipation-driven localization transition has been discussed [101]

and observed [102] in a Jaynes–Cummings dimer, where only two cavities (left L
and right R) are used i = L , R . The dimer effectively realizes a photonic Josephson
effect, similar to the oscillations of atoms in a Bose-Einstein condensate in a double
well [103]. While in the latter case the on-site (well) nonlinearity is provided by the
interatomic interaction, for the Jaynes–Cummings dimer this derives from the presence
of the qubits and the nonlinearity exists even in the case when they are detuned from
their respective cavities due to the ac Stark effect. Other ways of coupling the cavities
exist, for example in a ring [104] with broken time-reversal symmetry [105], a scheme
resembling a circular array of coupled Bose-Einstein condensates in rotation [106].

A well-studied model in many-body physics is the Holstein polaron model, in
which the local density of electrons/holes is coupled to the lattice deformation; as
a result, polaron excitations are formed due to the dressing of fermionic excitations
by (optical) dispersionless phonons. The Holstein model is not analytically solvable,
although approximation techniques giving results in good agreement with Monte Carlo
simulation do exist, for example the Toyozawa ansatz. Thus, a Holstein simulator
would be a useful tool. The elementary unit of such a device can be the Jaynes–
Cummings cavity-qubit system, as used in the standard transmon circuit, with the
additional feature that the qubits are coupled via a tunable interaction Hamiltonian
[107]. The total Hamiltonian of the system is therefore

H =
∑

n

[
h̄ωza†

nan + h̄ωc

2
σ z

n + h̄g(a†
nσ

−
n + σ+

n an)

]
+

+
∑

n

[
−t0(σ

+
n σ

−
n+1 + σ+

n+1σ
−
n )+ 2ε0 cos(ωd t)(an + a†

n)
]
. (31)

The frequencies of the resonators are denoted here by ωr , that of the qubits by ωc,
the coupling between the qubits and the corresponding resonator is g, the driving of
the resonators is done by a field with frequency ωd coupled to each resonator by ε0,
and the qubit-qubit interaction is characterized by a hopping matrix element t0, which
can be tuned by applying an external magnetic field. In the dispersive regime (defined
as |�| � g, where the detuning is � = ωc − ωz) we can apply a Schrieffer–Wolff

123



J Low Temp Phys (2014) 175:633–654 647

transformation Un = exp[− g
�
(σ+

n an − a†
nσ

−
n )] to each of the Jaynes–Cummings

units, resulting in the elimination of the qubit-resonator coupling; this is followed by
a displacement transformation an → an − ε0/h̄δω, where δω = ωc + χ − ωd and
χ = g2/� is the Stark shift. As a result, in the interaction picture and under the
assumption ε0 � h̄δω (which allows to neglect the vacuum term −h̄χ(σ z

n + 1)a†
nan)

the Hamiltonian Eq. (31) becomes [107]

Heff =
∑

n

h̄δω

[
a†

nan + gH
σ z

n + 1

2
(an + a†

n)

]
−

∑

n

t0(σ
+
n σ

−
n+1 + σ+

n+1σ
−
n ),

(32)
where gH δω = 2ε0χ/h̄δω. To obtain from this Hamiltonian the one-dimensional
Holstein model [108], we can represent the qubit operators as Fermi fields via a
Jordan–Wigner transform,

σ+
n = c†

n

n−1∏

m=1

eiπc†
m cm , (33)

σ z
n = 2c†

ncn − 1, (34)

resulting in

HHolstein =
∑

n

[
h̄δωa†

nan + h̄δωgH c†
ncn(a

†
n + an)− t0(c

†
ncn+1 + c†

n+1cn)
]
,

(35)
where now the first term plays the role of the phonon Hamiltonian, the second describes
the local density-coupling of the fermions to the phonons, and the last term is the fermi-
onic hopping term. The form of the Hamiltonian above allows the independent vari-
ation of each of the parameters entering the Hamiltonian. Indeed, δω can be changed
by changing the frequency of the driving field or the detuning �; the dimensionless
Holstein coupling gH can be modified via the amplitude of the driving field, which is
directly proportional to ε0; and the hopping matrix term t0 can be controlled by using
a SQUID-type configuration for the coupling and applying an external magnetic field.
Thus, every parameter regime of this model, including that of formation of “small”
polarons [108], can be reached.

The modification of the Holstein model to the case when the phonons are coupled
to the hopping matrix element instead of the density is called the SSH (Su-Schrieffer-
Heeger) model [109]. In this case the momentum of the electrons as they move between
lattice sites is modulated by the displacement of the lattice un+1 − un , where un ≈
a†

n + an , leading to coupling Hamiltonians of the type

HSSH = h̄δωgSSH (c
†
n + cn+1)(a

†
n+1 + an+1 − a†

n − an+1). (36)

This type of coupling appears in a variety of transport models (especially by nonlinear
excitations such as solitons) of π -electron systems, such as the polyacetylene mole-
cule and other organic semiconductors, as well as carbon nanotubes and graphene
nanostructures.
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Interestingly, the SSH model evades the conditions of validity of the Gerlach-Løwen
theorem, which asserts that for momentum-independent couplings models—such as
the Holstein model— the ground state is smooth in the coupling parameters, thus
these models do not have phase transitions. The phases of the SSH-coupled model are
subject to intensive theoretical investigations, and sharp transitions as a function of
coupling have been predicted recently [110–113]. An experimental validation of these
predictions would be very valuable. A quantum simulator for the SSH model using
superconducting circuits can be realized along the same lines as the Holstein simulator
described above [114]. To realize the modulation of the electron momentum, one has
to engineer a tunable coupling between the qubits using a SQUID loop into which the
flux of the resonators would couple [114].

5.3 Spin Lattices and Adiabatic Simulators

A special case of quantum simulators is that of adiabatic machines [115]; they solve
a specific problem, namely that of optimization by quantum annealing. This direction
has been consistently pursued by D-wave, a company that has designed and operated
processors comprising 128 (first-generation) and 512 (second-generation) flux qubits
with tunable couplings.

The Hamiltonian of a typical D-wave device can be written in the form [116]

H(t) = Γ (t)
N∑

i=1

Δiσ
x
i +Λ(t)HP, (37)

where Δi is the gap between states with clockwise and counterclockwise persistent
currents, and the Hamiltonian HP has the Ising-type form

HP =
N∑

i=1

hiσ
z
i +

N∑

i, j=1

Ji jσ
z
i σ

z
j . (38)

Quantum annealing proceeds by adiabatically decreasingΓ (t) from 1 to 0 and increas-
ing Λ from 0 to 1 monotonically in time, such that the system ends up in the ground
state of HP. The fact that annealing is realized by quantum-mechanical tunneling and
not just thermal activation has been tested so far for 8 qubits [116], though in more
recent D-wave devices, the number of qubits that stay quantum-coherent could be
larger.

Many well-known difficult problems from various fields (pattern matching, travel-
ing salesman, spin glasses, sampling problems, efficient data compression, etc.) can be
mathematically mapped onto the adiabatic quantum protocol. Very recently, finding
the ground state of the Miyazawa-Jernigan model of protein folding has been achieved
on this processor [117]. Protein folding is very important in biology and medicine—
incorrect protein folding causes for example the Parkinson and the Alzheimer diseases.

The issue of the “quantumness” of the D-wave processor has attracted recently a
lot of interest. Several comparison tests have been performed to see if the claim that

123



J Low Temp Phys (2014) 175:633–654 649

the calculation is faster than what is achievable with classical means stands up. So
far, the D-wave computer has been shown to be more efficient when tested against
general-purpose software, but not against optimized classical codes. The issue of
the scale over which quantum coherence is maintained in this processor is intensely
investigated [118], and clear benchmarking criteria for quantum speedup have been
proposed [119]. Quantum error correction would certainly improve the performance
of these machines. Recently, an error-correction protocol for quantum annealing has
been demonstrated on 344 qubits [120].

5.4 The Tavis–Cummings Model

The Tavis–Cummings model [121] is a model originally proposed to describe the
interaction between an ensemble of noninteracting molecules and the electromagnetic
field. It is defined by the Hamiltonian

HTC = h̄ωr a†a +
N∑

j=1

[
h̄ω j

2
σ z

j + h̄g(a†σ j + σ+
j a)

]
, (39)

where ωr is the frequency of the resonator, ω j is that of each of the N qubits, and
g is the coupling between the qubit and the resonator. The interesting feature of the
Tavis–Cummings model is the formation of collective multiqubit states with a

√
N

collective dipole strength. This
√

N scaling has been verified for N = 3 transmon
qubits placed in a coplanar waveguide resonator [122]. In this case the transitions
visible at degeneracy ω j = ωr are those between the ground state |g, g, g〉 ⊗ |0〉 and
two “bright” states containing one excitation, either in the resonator or distributed
among the the qubits,

|3, 1±〉 = 1√
2

[|g, g, g〉 ⊗ |1〉 ± |W3〉 ⊗ |0〉] , (40)

where |W3〉 is the 3-qubit W -state defined as

|W3〉 = 1√
3
(|e, g, g〉 + |g, e, g〉 + |g, g, e〉) . (41)

The frequency separation between the transitions |g, g, g〉⊗|0〉 → |3, 1±〉 is
√

3g/π ,
allowing to verify directly the

√
3 scaling from spectroscopic measurements [122].

W states, in which the excitation is coherently shared between a large number of
qubits, are interesting from a fundamental point of view, since it has been shown that
they lead to direct logical contradictions with local realism [123,124]. To increase the
number of qubits one needs to have a qubit smaller in size than the transmon, so they
can fit along the resonator. Recently, such a sample with 20 flux qubits inserted in a
resonator has been fabricated and studied [125], allowing to check the

√
N scaling

and the formation of collective modes for up to N = 8.
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6 Conclusions

The technology of superconducting circuits is at the forefront of a research direc-
tion attempting to realize quantum simulators. Such devices would be tremendously
interesting for scientific research, and would have a high impact on solving certain
mathematical, physical, and computational problems. Simulating the behavior of real
systems faster than what is possible with classical computers would be a turning point
in computational science in general. Also, using quantum simulators one could in
principle have access to a wider range of parameters to explore, opening the way to
the discovery of novel effects and states of matter.
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