
Quantum physics-informed
neural networks for simulating
computational fluid dynamics
in complex shapes

Simulation

By Terra Quantum AG

terraquantum.swiss 2023

Quantum physics-informed neural networks
for simulating computational fluid dynamics in complex shapes

Alexandr Sedykh,1 Maninadh Podapaka,2 Asel Sagingalieva,1

Nikita Smertyak,1 Karan Pinto,1 Markus Pflitsch,1 and Alexey Melnikov1

1Terra Quantum AG, 9000 St. Gallen, Switzerland
2Evonik Industries AG, 45128 Essen, Germany

Finding the distribution of the velocities and pressures of a fluid (by solving the Navier-Stokes
equations) is a principal task in the chemical, energy, and pharmaceutical industries, as well as in me-
chanical engineering and the design of pipeline systems. With existing solvers, such as OpenFOAM
and Ansys, simulations of fluid dynamics in intricate geometries are computationally expensive and
require re-simulation whenever the geometric parameters or the initial and boundary conditions
are altered. Physics-informed neural networks (PINNs) are a promising tool for simulating fluid
flows in complex geometries, as they can adapt to changes in the geometry and mesh definitions,
allowing for generalization across different shapes. We present a hybrid quantum physics-informed
neural network that simulates laminar fluid flows in 3D Y-shaped mixers. Our approach combines
the expressive power of a quantum model with the flexibility of a PINN, resulting in a 21% higher
accuracy compared to a purely classical neural network. Our findings highlight the potential of
machine learning approaches, and in particular quantum PINNs, for complex shape optimization
tasks in computational fluid dynamics. By improving the accuracy of fluid simulations in complex
geometries, our research using quantum PINNs contributes to the development of more efficient and
reliable fluid dynamics solvers.

I. INTRODUCTION

Computational fluid dynamics (CFD) solvers are pri-
marily used to find the distribution of the velocity vector,
, and pressure, p, of a fluid (or several fluids) given the
initial conditions (e.g. initial velocity profile) and the ge-
ometrical domain in which the fluid flows [1, 2]. To do
this, it is necessary to solve a system of differential equa-
tions [3] called the Navier-Stokes (NS) equations that
govern the fluid flow [4]. A well-established approach
is to use numerical CFD solvers from several vendors,
as well as publicly accessible alternatives, such as Open-
FOAM [5] or Ansys [6]. These solvers discretize a given
fluid volume into several small parts known as cells [7],
where it is easier to get an approximate solution and
then join the solutions of all the cells to get a complete
distribution of the pressure and velocity over the entire
geometrical domain.

While this is a rather crude explanation of how CFD
solvers actually work, the idea of discretizing a large do-
main into smaller pieces accurately captures one of their
main working principles [8]. The runtime of the com-
putation and the accuracy of the solution both sensi-
tively depend on the fineness of discretization, with finer
grids taking longer but giving more accurate solutions.
Furthermore, any changes to the geometrical parameters
necessitate the creation of a new mesh and a new simu-
lation. This process consumes both time and resources
since one has to remesh and rerun the simulation every
time a geometrical parameter is altered [9].

We propose a workflow employing physics-informed
neural networks (PINNs) [10] to escape the need to com-
pletely restart the simulations whenever a geometrical
property is changed. A PINN is a new promising tool

for solving all kinds of parameterized partial differential
equations (PDEs) [9], as it does not require many prior
assumptions, linearization or local time-stepping. One
defines an architecture of the neural network (number of
neurons, layers, etc.) and then embeds physical laws and
boundary conditions into it via constructing an appropri-
ate loss function, so the prior task immediately travels to
the domain of optimization problems.

For the classical solver, in the case of a parameterized
geometric domain problem, getting accurate predictions
for new modified shapes requires a complete restart of
the program, even if the geometry has changed slightly.
In the case of a PINN, to overcome this difficulty, one can
use the transfer learning method [11] (Sec. III A 2), which
allows a model previously trained on some geometry to
be trained on a slightly modified geometry without the
need for a complete reset.

Also, using a trained PINN, it is easy to obtain a so-
lution for other parameters of the PDE equation (e.g.
kinematic viscosity in the NS equation [4], thermal con-
ductivity in the heat equation, etc.) with no additional
training or restart of the neural network, but in the case
of traditional solvers, restarts cannot be avoided.

One of the features which makes PINNs appealing is
that they suffer less from the curse of dimensionality. Fi-
nite discretization of a d-dimensional cube with N points
along each axis would require Nd points for a traditional
solver. In other words, the complexity of the problem
grows exponentially as the sampling size d increases. Us-
ing a neural network, however, one can define a Rd → R
mapping (in case of just one target feature) with some
weight parameters. Research on the topic suggests that
the amount of weights/complexity of a problem in such
neural networks grows polynomially with the input di-
mension d [12, 13]. This theoretical foundation alone

ar
X

iv
:2

30
4.

11
24

7v
1

 [
cs

.L
G

]
 2

1
A

pr
 2

02
3

2

allows PINNs to be a competitive alternative to solvers.

It is worth noting that although a PINN does not re-
quire Nd points for inference, it does require many points
for training. There exist a variety of sampling meth-
ods, such as latin hypercube sampling [14], Sobol se-
quences [15], etc., which can be used to improve a PINN’s
convergence on training [16]. However, a simple static
grid of points is used in this work for the purpose of sim-
plicity.

Classical machine learning can benefit substantially
from quantum technologies. In [17], quantum comput-
ing is used in a similar problem setting. The perfor-
mance of the current classical models is constrained by
the high computing requirements. Quantum comput-
ing models can improve the learning process of existing
classical models [18–23], allowing for better target func-
tion prediction accuracy with fewer iterations [24]. In
many industries, including the pharmaceutical [25, 26],
space [27], automotive [28], and financial [29–33] sec-
tor quantum technologies can provide unique advantages
over classical computing. Many traditionally important
machine learning domains are also getting potential ben-
efits from utilizing quantum technologies, e.g., in image
processing [34–37] and natural language processing [38–
41].

Recent developments in automatic differentiation en-
able us to compute the exact derivatives of any order of a
PINN, so there is no need to use finite differences or any
other approximate differentiation techniques. It there-
fore seems that we do not require a discretized mesh over
the computational domain. However, we still need a col-
lection of points from the problem’s domain to train and
evaluate a PINN. For a PINN to provide an accurate solu-
tion for a fluid dynamics problem, it is important to have
a high expressivity (ability to learn solutions for a large
variety of, possibly complex, problems). Fortunately, ex-
pressivity is a known strength of quantum computers [42].
Furthermore, quantum circuits are differentiable, which
means that their derivatives can be calculated analyti-
cally, which is essential on noisy intermediate-scale quan-
tum devices.

In this article, we propose a quantum PINN to solve
the NS equations with a steady flow in 3D Y-shape mixer.
The general principles and loss function of PINN work-
flow are described in Sec. II. The problem description,
including the geometrical details, is presented in Sec. III
while in Sec. III A and Sec. III B, we describe classical
and quantum PINNs in detail. Sec. III A 1 explains the
intricacies of PINN’s training process and simulation re-
sults. A transfer learning approach, applied to PINNs, is
presented in Sec. III A 2. Conclusions and further plans
are described in Sec. IV.

II. PHYSICS-INFORMED NEURAL
NETWORKS FOR SOLVING PARTIAL

DIFFERENTIAL EQUATIONS

Physics-informed neural networks (PINNs) were origi-
nally introduced in [10]. The main idea is to use a neural
network - usually a feedforward neural network like a
multilayer perceptron - as a trial function for a PDE’s
solution. Let us consider an abstract PDE:

D[f(r, t);λ] = 0, (1)

where Ω ⊂ Rd is the computational domain, r ∈ Ω is a co-
ordinate vector, t ∈ R is time, D is a nonlinear differential
operator with λ standing in for the physical parameters
of the fluid and f(r, t) is a solution function.

Let us consider a neural network u(r, t) that takes co-
ordinates, r, and time, t, as input and yields some real
value (e.g. the pressure of a liquid at this coordinate at
this particular moment of time).

We can evaluate u(r, t) at any point in the computa-
tional domain via a forward pass and compute its deriva-
tives (of any order) ∂nt u(r, t), ∂nr u(r, t) through back-
propagation [43]. Therefore, we could just substitute
f(r, t) = u(r, t) and try to learn the correct solution for
the PDE via common machine learning gradient opti-
mization methods [44] (e.g., gradient descent).

This approach is inspired firstly by the ability to calcu-
late the exact derivatives of a neural network via autod-
ifferentiation [45] and secondly by neural networks being
universal function approximators [46].

The loss, L, that the PINN tries to minimize is defined
as

L = LPDE + LBC, (2)

where LBC is the boundary condition loss and LPDE is
the partial differential equation loss.

The boundary condition loss is responsible for satisfy-
ing the boundary conditions of the problem (e.g., a fixed
pressure on the outlet of a pipe). For any field value, u,
let us consider a Dirichlet (fixed-type) boundary condi-
tion [47]

u(r, t)|r∈B = u0(r, t), (3)

where u0(r, t) is a boundary condition and B ⊂ Rd is the
region where a boundary condition is applied.

If u(r, t) is a neural network function (see Sec. II), the
boundary condition loss is calculated in a mean-squared
error (MSE) manner:

LBC = 〈(u(r, t)− u0(r, t))2〉B , (4)

where 〈·〉B denotes averaging over all the data points
r ∈ B that have this boundary condition.

The PDE loss is responsible for solving the governing
PDE. If we have an abstract PDE (1) and a neural net-
work function u(r, t), substituting f(r, t) = u(r, t) and
calculating the mean-squared error of the PDE gives:

LPDE = 〈(D[u(r, t);λ])2〉Ω, (5)

3

inlet

outlet

Gradients are computed
via autodifferentiation

(backward pass)

Navier-Stokes

continuity

Walls

Inlets

Outlets

Interior

Loss

(MSE-type)

Repeat

PDE
loss

Boundary
conditions
loss

+

Sampled
Points

GEOMETRY

Update weights

16

F
il
te

r

S
iL

U
 a

ct
iv

a
ti
o
n

S
iL

U
 a

ct
iv

a
ti
o
n

+

+

+

+

+

+

QUANTUM LAYER

PHYSICS-INFORMED NEURAL NETWORK

 layers

 repetitions repetitions

 repetitions

FIG. 1. Scheme for the implementation of the hybrid PINN’s training process and its architecture. PINN takes the (x, y, z)
coordinates of the points, sampled in the geometrical domain, and yields (v, p) as output, where v is the velocity vector and
p is the pressure. The neural network itself begins with a classical part, which is a multilayer perceptron with l layers of n
neurons. Then there is a quantum layer (a variational quantum circuit). “Filter” divides input points into 4 groups, where
each group has its own constraint (a boundary condition or a PDE). The error of each constraint is calculated and added to
the total loss, which is minimized via gradient descent. The training process is described in Sec. III A 1.

where 〈·〉Ω means averaging over all the data points in
the domain of the PDE.

III. SIMULATIONS

In this work, we consider the steady (i.e., time-
independent) flow of an incompressible fluid in 3D with-
out any external forces.

The NS equations (6) and the continuity equation (7)
describe this scenario as follows:

− (v · ∇)v + ν∆v − 1

ρ
∇p = 0, (6)

∇ · v = 0, (7)

where v(r) is the velocity vector, p(r) is the pressure, ν
is the kinematic viscosity and ρ is the fluid density. The
PDE parameters ν and ρ were previously referred to as
λ. For each of the 4 PDEs (3 projections of vector equa-
tion 6 and 1 scalar equation 7), the LPDE is calculated
separately and then summed up.

Our task is to simulate the flow of liquid in a Y-shaped
mixer consisting of three tubes (Fig. 2). The mixing flu-
ids are identical and have parameters ρ = 1.0 kg/m3 and
ν = 1.0 m2/s.

The imposed boundary conditions are as follows:

• no-slip BC on walls: v(r)|walls = 0,

• fixed velocity profile on inlets: v(r)|inlets = v0(r),

• fixed pressure on outlets: p(r)|outlets = p0,

where, in this work, v0(r) are parabolic velocity profiles
on each inlet and p0(r) = 0.

A. Classical PINN

In this section, we provide details on the PINN’s ar-
chitecture, training process, and simulation results. The
PINN is a neural network whose architecture is a multi-
layer perceptron with several fully connected layers. As
shown in Fig. 1, the first layer consists of 3 neurons (since

4

1)

2)

Loss over epochs Absolute velocity value Velocity projection Velocity projection

FIG. 2. 1) Classical model. (a) Loss curve. The classical PINN managed to learn solution near the entry point well. However,
it vanishes to zero further down the mixer. 2) Transfer learned models. (a) Loss curve. The transfer-learned models trained
better with each iteration, surpassing the original model. (b, c, d) Distributions of the fluid velocity for the last model with
α = 35◦.

the problem is 3D), then there are l = 5 hidden layers
with n = 64 neurons, and the penultimate layer has 16
neurons. For the classical PINN, the “quantum layer”
box is replaced with one fully-connected layer 16 → 4.
There is no quantum layer in the classical case, so the
output goes straight into the filter. Between adjacent
layers, there is a sigmoid linear unit (SiLU) activation
function [48]. The PINN takes the (x, y, z) coordinates
as inputs and yields (v, p) as its output, where v is the
velocity vector with three components and p is the pres-
sure.

1. Training

The geometry is a collection of points organized in a
.csv file. It is split into four groups: fluid domain, walls,
inlets, and outlets. The fluid domain is the domain in
which the NS equations are solved, i.e. where the fluid
flows. The other three groups have boundary conditions
described in Sec. II.

While untrained, PINN produces some random dis-
tribution of velocities and pressures. These values and
their gradients are substituted into the corresponding NS

equations and boundary conditions. With every itera-
tion, the weights of the neural network are updated to
minimize the error in the governing equations, and our
solution becomes more and more accurate.

The PINN is trained via full-batch gradient descent
with the Adam optimizer [49] for 1000 epochs, and then
with L-BFGS optimizer [50] for 100 epochs. All points
from the geometrical domain are processed at once, so
one step of the optimizer equals one epoch. The training
iteration is simple: the point cloud is passed through
the PINN, the MSE loss is calculated (getting it requires
taking gradients of (v, p) at each point of the geometry),
the gradient of the loss with respect to the weights is
taken and the parameters are updated.

Classical PINN training (1100 total epochs) took 5
minutes on single NVIDIA A100 GPU. To visualize the
training outcomes of the neural network, we used Par-
aView [51] and the simulation results are shown in Fig. 2
(1) for loss and velocity distribution.

After the training, the PINN manages to learn a non-
trivial downward flow at the beginning of both pipes.
On the edges of these pipes, the velocities become zero,
as they should due to no-slip wall boundary conditions.
However, further down the mixer, the solution degener-

5

ates to zero, so it does not even reach the mixing point.
This fact should at least violate the continuity equation
because there is an inward flow without matching out-
ward flow, but the model still treats this situation as an
optimum and refuses to propagate the solution further.
Possible reasons for this could be a mismatch between
the scales of the different loss terms (continuity, NS and
BC) in the total loss, the limited expressivity of the un-
derlying neural network, the points sampling strategy or
the choice of the optimizer. Still, we stick to our simple
workflow and use this incomplete solution as a reference
to further explore the properties of the PINN without
overcomplicating the problem.

2. Transfer Learning

Transfer learning is a powerful method of using the
knowledge and experience of one model that has been
pretrained on one problem to solve another problem [11].
It is extremely useful because it means that a second
model does not have to be trained from scratch. This
is especially helpful for fluid modeling where the crucial
issue of selecting the most appropriate geometrical hy-
perparameters would otherwise lead to the simulations
being rerun many times.

For transfer learning, we used a model from the pre-
vious section as a base, which had α0 = 30◦, where α
is the angle between the right pipe and the x axis (see
Fig. 2). Then, for each α = {31◦, 32◦, 33◦, 34◦, 35◦}, we
tried to obtain the solution, each time using the pre-
viously trained model as a initializer. For example, to
transfer learn from 31◦ to 32◦, we used the 31◦ model as
a base and so on. Each iteration is trained for 100 epochs
with L-BFGS. Fig. 2 shows that the PINN adapts well
to changes in the value of α. That is, our hypothesis was
correct: with PINNs, one does not need to completely re-
run the simulation on a parameter change, transfer learn-
ing from the base model will suffice.

B. Hybrid Quantum PINN

Quantum machine learning may help to improve the
performance of the classical PINN. We propose a quan-
tum PINN, which is a hybrid quantum-classical neu-
ral network. In the Noisy Intermediate-Scale Quantum
(NISQ) era, when quantum computers do not have ac-
cess to a quantum memory or a large number of qubits,
the algorithms that are known to be superior to clas-
sical ones cannot be implemented. Heurisitc quantum
algorithms, however, have less stringent requirements for
their implementation. Here, we use a variational quan-
tum circuit (VQC) approach, which is one of the most
promising NISQ algorithms today. It combines the best
ideas of classical and quantum machine learning [25, 52–
55].

At the moment, using only VQCs is not enough to solve
large problems, especially for industrial tasks, so several
more classical neural layers are used with a VQC (hence
the name, “hybrid”). Also, the use of a large number of
qubits and layer repetitions leads to the barren plateau
problem [56, 57].

As an overview of the workflow, preliminary data pro-
cessing takes place on a classical computer. This data is
then encoded into the parameters of the quantum gates
of an encoding layer of the VQC, followed by a variational
layer. As the algorithm progresses, the gate parameters
in the variational layer of the VQC are varied and finally,
in the measurement layer of the VQC the qubits are mea-
sured, producing a set of classical bits as the output.

A quantum algorithm can be represented as a kind of
black box into which classical information enters, classi-
cal information comes out. The goal is to choose such
variational parameters so that the measurement result is
as accurate as possible in terms of the prediction func-
tion. In this way, finding the optimal gate parameters
is like finding the optimal weights in a classical neural
network. Hence, we refer to this as training the VQC.

1. Variational Quantum Circuit

Quantum gates are the basic building blocks for any
quantum circuit, including those used for machine learn-
ing. Quantum gates come in single-qubit (e.g. rotation
gate Ry(θ), gate that plays a central role in quantum
machine learning) and multiple-qubit gates (e.g. CNOT)
and modulate the state of qubits to perform computa-
tions. The Ry(θ) gate rotates the qubit around the y-
axis of the Bloch sphere by an angle θ, while the two-
qubit CNOT gate changes the state of one qubit based
on the current state of another qubit. Gates can be fixed,
which means they perform fixed calculations, such as the
Hadamard gate, or they can be variable, such as the ro-
tation gate that depends on the rotation angle and may
perform computations with tunable parameters.

To get the results, the qubits are measured (i.e., pro-
jected onto some basis) and the expected value is cal-
culated. If we use the σz Pauli matrix observable, the
expected value of that measurement is expressed as:
〈ψ|σz |ψ〉, where ψ is the wave function which describes
the current state of our quantum system. An introduc-
tion to quantum circuits, including logic gates and mea-
surements, can be found in standard quantum computing
textbooks, such as [58].

2. Training

The hybrid PINN consists of the classical PINN with
weights preinitialized from the previous stage (as de-
scribed in Sec. III A), a VQC and a fully-connected layer
at the end. The VQC’s design is inspired by [59].

6

Loss over epochs Absolute velocity value Velocity projection Velocity projection

FIG. 3. Hybrid quantum model. (a) Loss curve. (b, c, d) Distribution of the fluid velocities for the hybrid PINN at (α = 30◦).
Similarly to the classical model, a non-trivial solution near the entry point is present. However, there is an asymmetry between
the left and the right pipe, which should not be there. This could be an effect of the data encoding strategy.

The training process of the hybrid PINN does not dif-
fer from that of the classical PINN except in the following
ways. Firstly, all calculations are done on the classical
simulator of quantum hardware, the QMware server [60],
which has recently been shown to be quite good for run-
ning hybrid algorithms [61].

Secondly, how does one backpropagate through the
quantum circuit layer? The answer is to use the “ad-
joint differentiation” method, introduced in [62], which
helps to efficiently compute derivatives of a VQC on a
classical simulator.

This time the model was trained for 100 epochs us-
ing mini-batch gradient descent with the Adam optimizer
(Fig. 3). The mini-batch strategy was employed due to
the very low speed of training of quantum circuits, as
they train on a CPU. We will then compare this model
with a purely classical one, with exactly the same archi-
tecture from Sec. III A, but this time trained only with
mini-batch Adam. All learning hyperparameters (learn-
ing rate, scheduler parameters, batch size) are shared be-
tween the quantum and classical model. Comparing the
two, Fig. 4 shows that the quantum model outperforms
the classical one in terms of the loss value by 21%.

We tried to do inference of our model on real quantum
processing units (QPUs) Lucy [63] and Rigetti’s Aspen-
M-3 [64]. That means, we have chosen some points from
the geometrical domain and predicted velocity and pres-
sure fields for them. On comparison, results from both
QPUs greatly differ from the simulator ones. Most likely,
these errors are caused by noise and decoherence, which
are hard to mitigate. Also, particular QPUs work bet-
ter with circuits that take into account their particular
topology and gate implementations. We did not consider
such limitations, as the primary tests of our quantum
circuit were conducted on a simulator.

5 25 50 75 100
Epochs

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

L
os

s

21% improvement

quantum PINN

classical PINN

FIG. 4. Losses for the classical and hybrid quantum PINNs.
Hybrid quantum PINN outperforms the classical PINN in
terms of loss value due to higher expressivity.

IV. DISCUSSION

In this work we examine a recently introduced [10] way
of solving computational fluid simulation tasks, PINNs.
This approach is based on substituting the solution func-
tion of the problem with a neural network of an arbi-
trary architecture (a multi-layer perceptron is used in this
work) and optimizing trainable parameters via gradient
descent (Adam, L-BFGS). In this problem setting, the
loss function becomes a combination of the residual error
of corresponding PDE and boundary conditions. We try
to use this approach to solve a laminar mixing problem in
a 3D Y-shaped geometrical domain and achieve plausible
solution in the upper part of the mixer. The solution,

7

however, vanishes to zero as it goes lower through the
mixer. The reason behind such behaviour could be in-
sufficient expressivity of the model, static point sampling
or even the choice of the optimizers.

We then explore a transfer learning technique with ap-
plication to a classical PINN, which shows that the PINN
is actually capable of generalizing an existing solution to
a weakly changed geometrical domain with little addi-
tional training. This enables PINNs to be very helpful in
shape optimization tasks because traditional solvers lack
this feature and demand a full restart on any parame-
ter change. Also, with each step of the angle α, we see
that the PINN achieves an even lower loss than before.
It may be that this step-by-step learning helps the PINN
to mitigate overfitting to a particular geometrical domain
of the problem.

Afterwards, we introduce a new PINN framework – a
quantum PINN. We build it on top of a classical fully-
conntected PINN by adding a quantum circuit with train-
able gates. We explore the potential of this model to solve
the NS equations and show its superiority to purely clas-
sical network in terms of the loss value on 21%, which
could mean that the chosen quantum circuit increases
the PINN’s expressiveness.

The future plan includes exploring better architectures
for the quantum PINN, investigating their impact on
expressiveness, generalizability and optimization land-
scape, as well as trying out data-driven approaches. En-
tirely different networks, such as neural operators [65, 66]
and graph neural networks [67, 68], could also be consid-
ered in a quantum setting and enhanced with quantum
circuits.

[1] Mohd Hafiz Zawawi, A Saleha, A Salwa, NH Hassan,
Nazirul Mubin Zahari, Mohd Zakwan Ramli, and Za-
karia Che Muda. A review: Fundamentals of computa-
tional fluid dynamics (CFD). In AIP conference proceed-
ings. AIP Publishing LLC, 2018.

[2] John David Anderson and John Wendt. Computational
fluid dynamics, volume 206. Springer, 1995.

[3] George Finlay Simmons. Differential equations with ap-
plications and historical notes. In Differential Equations
With Applications and Historical Notes. McGraw-Hill,
1972.

[4] Aaron Jon Katz. Meshless methods for computational
fluid dynamics. Stanford University, 2009.

[5] OpenFOAM. https://www.openfoam.com/, 2022.
[6] Ansys. https://www.ansys.com/, 2022.
[7] Tomislav Marić, Douglas B. Kotheb, and Dieter Bothe.

Unstructured un-split geometrical volume-of-fluid meth-
ods - A review. Journal of Computational Physics, 420,
2020.

[8] Tomislav Marić, Holger Marschall, and Dieter Bothe. vo-
foam - a geometrical volume of fluid algorithm on ar-
bitrary unstructured meshes with local dynamic adap-
tive mesh refinement using OpenFOAM. arXiv preprint
arXiv: 1305.3417, 2013.

[9] Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang
Yin, and George Em Karniadakis. Physics-informed neu-
ral networks (PINNs) for fluid mechanics: A review. Acta
Mechanica Sinica, pages 1–12, 2022.

[10] Maziar Raissi, Paris Perdikaris, and George E Karni-
adakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems
involving nonlinear partial differential equations. Journal
of Computational Physics, 378:686–707, 2019.

[11] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang.
What is being transferred in transfer learning? arXiv
preprint arXiv:2008.11687, 2020.

[12] Martin Hutzenthaler, Arnulf Jentzen, Thomas Kruse,
and Tuan Anh Nguyen. A proof that rectified deep neu-
ral networks overcome the curse of dimensionality in the
numerical approximation of semilinear heat equations.
SN partial differential equations and applications, 1:1–34,
2020.

[13] Philipp Grohs, Fabian Hornung, Arnulf Jentzen, and
Philippe Von Wurstemberger. A proof that artificial neu-
ral networks overcome the curse of dimensionality in the
numerical approximation of Black-Scholes partial differ-
ential equations. arXiv preprint arXiv:1809.02362, 2018.

[14] Michael Stein. Large sample properties of simulations us-
ing latin hypercube sampling. Technometrics, 29(2):143–
151, 1987.

[15] Ilya M Sobol’, Danil Asotsky, Alexander Kreinin,
and Sergei Kucherenko. Construction and compar-
ison of high-dimensional Sobol’generators. Wilmott,
2011(56):64–79, 2011.

[16] Kirill Zubov, Zoe McCarthy, Yingbo Ma, Francesco Cal-
isto, Valerio Pagliarino, Simone Azeglio, Luca Bottero,
Emmanuel Luján, Valentin Sulzer, Ashutosh Bharambe,
et al. Neuralpde: Automating physics-informed neu-
ral networks (PINNs) with error approximations. arXiv
preprint arXiv:2107.09443, 2021.

[17] Frank Gaitan. Finding flows of a Navier–Stokes fluid
through quantum computing. npj Quantum Information,
6(1):1–6, 2020.

[18] Vedran Dunjko and Hans J Briegel. Machine learning
& artificial intelligence in the quantum domain: a re-
view of recent progress. Reports on Progress in Physics,
81(7):074001, 2018.

[19] Alexey Melnikov, Mohammad Kordzanganeh, Alexander
Alodjants, and Ray-Kuang Lee. Quantum machine learn-
ing: from physics to software engineering. Advances in
Physics: X, 8(1):2165452, 2023.

[20] Hartmut Neven, Vasil S. Denchev, Geordie Rose, and
William G. Macready. QBoost: Large scale classifier
training with adiabatic quantum optimization. In Steven
C. H. Hoi and Wray Buntine, editors, Proc. Asian Conf.
Mach. Learn., volume 25 of Proceedings of Machine
Learning Research, pages 333–348. PMLR, 2012.

[21] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd.
Quantum support vector machine for big data classifica-
tion. Physical Review Letters, 113:130503, Sep 2014.

[22] Valeria Saggio, Beate E Asenbeck, Arne Hamann, Teodor
Strömberg, Peter Schiansky, Vedran Dunjko, Nicolai
Friis, Nicholas C Harris, Michael Hochberg, Dirk En-
glund, et al. Experimental quantum speed-up in rein-

https://www.openfoam.com/
https://www.ansys.com/

8

forcement learning agents. Nature, 591(7849):229–233,
2021.

[23] Mohammad Kordzanganeh, Daria Kosichkina, and
Alexey Melnikov. Parallel hybrid networks: an interplay
between quantum and classical neural networks. arXiv
preprint arXiv:2303.03227, 2023.

[24] Michael Perelshtein, Asel Sagingalieva, Karan Pinto,
Vishal Shete, Alexey Pakhomchik, Artem Melnikov, Flo-
rian Neukart, Georg Gesek, Alexey Melnikov, and Va-
lerii Vinokur. Practical application-specific advantage
through hybrid quantum computing. arXiv preprint
arXiv:2205.04858, 2022.

[25] Asel Sagingalieva, Mohammad Kordzanganeh, Nurbo-
lat Kenbayev, Daria Kosichkina, Tatiana Tomashuk,
and Alexey Melnikov. Hybrid quantum neural net-
work for drug response prediction. arXiv preprint
arXiv:2211.05777, 2022.

[26] A. I. Gircha, A. S. Boev, K. Avchaciov, P. O. Fedichev,
and A. K. Fedorov. Training a discrete variational au-
toencoder for generative chemistry and drug design on a
quantum annealer. arXiv:2108.11644, 2021.

[27] Serge Rainjonneau, Igor Tokarev, Sergei Iudin, Saaketh
Rayaprolu, Karan Pinto, Daria Lemtiuzhnikova, Mi-
ras Koblan, Egor Barashov, Mohammad Kordzanganeh,
Markus Pflitsch, et al. Quantum algorithms applied to
satellite mission planning for Earth observation. arXiv
preprint arXiv:2302.07181, 2023.

[28] Asel Sagingalieva, Andrii Kurkin, Artem Melnikov,
Daniil Kuhmistrov, Michael Perelshtein, Alexey Mel-
nikov, Andrea Skolik, and David Von Dollen. Hyperpa-
rameter optimization of hybrid quantum neural networks
for car classification. arXiv preprint arXiv:2205.04878,
2022.

[29] Javier Alcazar, Vicente Leyton-Ortega, and Alejandro
Perdomo-Ortiz. Classical versus quantum models in ma-
chine learning: insights from a finance application. Ma-
chine Learning: Science and Technology, 1(3):035003,
2020.

[30] Brian Coyle, Maxwell Henderson, Justin Chan Jin Le, Ni-
raj Kumar, Marco Paini, and Elham Kashefi. Quantum
versus classical generative modelling in finance. Quantum
Science and Technology, 6(2):024013, 2021.

[31] Marco Pistoia, Syed Farhan Ahmad, Akshay Ajagekar,
Alexander Buts, Shouvanik Chakrabarti, Dylan Herman,
Shaohan Hu, Andrew Jena, Pierre Minssen, Pradeep
Niroula, Arthur Rattew, Yue Sun, and Romina Yalovet-
zky. Quantum Machine Learning for Finance. arXiv
preprint arXiv:2109.04298, 2021.

[32] Dimitrios Emmanoulopoulos and Sofija Dimoska. Quan-
tum Machine Learning in Finance: Time Series Forecast-
ing. arXiv preprint arXiv:2202.00599, 2022.

[33] El Amine Cherrat, Snehal Raj, Iordanis Kerenidis,
Abhishek Shekhar, Ben Wood, Jon Dee, Shouvanik
Chakrabarti, Richard Chen, Dylan Herman, Shaohan
Hu, Pierre Minssen, Ruslan Shaydulin, Yue Sun, Romina
Yalovetzky, and Marco Pistoia. Quantum Deep Hedging.
arXiv preprint arXiv:2303.16585, 2023.

[34] Arsenii Senokosov, Alexander Sedykh, Asel Sagingalieva,
and Alexey Melnikov. Quantum machine learning for
image classification. arXiv preprint arXiv:2304.09224,
2023.

[35] Wei Li, Peng-Cheng Chu, Guang-Zhe Liu, Yan-Bing
Tian, Tian-Hui Qiu, and Shu-Mei Wang. An Image Clas-
sification Algorithm Based on Hybrid Quantum Classical

Convolutional Neural Network. Quantum Engineering,
2022:1–9, 2022.

[36] A Naumov, Ar Melnikov, V Abronin, F Oxanichenko,
K Izmailov, M Pflitsch, A Melnikov, and M Perelshtein.
Tetra-AML: Automatic machine learning via tensor net-
works. arXiv preprint arXiv:2303.16214, 2023.

[37] Farina Riaz, Shahab Abdulla, Hajime Suzuki, Srinjoy
Ganguly, Ravinesh C. Deo, and Susan Hopkins. Ac-
curate Image Multi-Class Classification Neural Network
Model with Quantum Entanglement Approach. Sensors,
23(5):2753, 2023.

[38] Zhenhou Hong, Jianzong Wang, Xiaoyang Qu, Chendong
Zhao, Wei Tao, and Jing Xiao. QSpeech: Low-Qubit
Quantum Speech Application Toolkit. arXiv preprint
arXiv:2205.13221, 2022.

[39] Robin Lorenz, Anna Pearson, Konstantinos Meichanet-
zidis, Dimitri Kartsaklis, and Bob Coecke. QNLP in
Practice: Running Compositional Models of Meaning on
a Quantum Computer. arXiv preprint arXiv:2102.12846,
2021.

[40] Bob Coecke, Giovanni de Felice, Konstantinos Me-
ichanetzidis, and Alexis Toumi. Foundations for Near-
Term Quantum Natural Language Processing. arXiv
preprint arXiv:2012.03755, 2020.

[41] Konstantinos Meichanetzidis, Alexis Toumi, Giovanni de
Felice, and Bob Coecke. Grammar-Aware Question-
Answering on Quantum Computers. arXiv preprint
arXiv:2012.03756, 2020.

[42] Oleksandr Kyriienko, Annie E Paine, and Vincent E
Elfving. Solving nonlinear differential equations with
differentiable quantum circuits. Physical Review A,
103(5):052416, 2021.

[43] David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. Learning representations by back-propagating
errors. Nature, 323(6088):533–536, 1986.

[44] Sebastian Ruder. An overview of gradient descent opti-
mization algorithms. arXiv preprint arXiv: 1609.04747,
2016.

[45] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey An-
dreyevich Radul, and Jeffrey Mark Siskind. Automatic
differentiation in machine learning: a survey. Journal of
Machine Learning Research, 18(153):1–43, 2018.

[46] Kurt Hornik, Maxwell B. Stinchcombe, and Halbert L.
White. Multilayer feedforward networks are universal
approximators. Neural Networks, 2:359–366, 1989.

[47] C Greenshields and H Weller. Notes on computational
fluid dynamics: General principles. CFD Direct Ltd.:
Reading, UK, 2022.

[48] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-
weighted linear units for neural network function ap-
proximation in reinforcement learning. Neural Networks,
107:3–11, 2018.

[49] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[50] Dong C Liu and Jorge Nocedal. On the limited memory
BFGS method for large scale optimization. Mathematical
programming, 45(1-3):503–528, 1989.

[51] ParaView. https://www.paraview.org/, 2022.
[52] Andrea Mari, Thomas R. Bromley, Josh Izaac, Maria

Schuld, and Nathan Killoran. Transfer learning in hy-
brid classical-quantum neural networks. Quantum, 4:340,
2020.

[53] Chen Zhao and Xiao-Shan Gao. QDNN: DNN

https://www.paraview.org/

9

with quantum neural network layers. arXiv preprint
arXiv:1912.12660, 2019.

[54] Tong Dou, Kaiwei Wang, Zhenwei Zhou, Shilu Yan, and
Wei Cui. An unsupervised feature learning for quantum-
classical convolutional network with applications to fault
detection. In 2021 40th Chinese Control Conference
(CCC), pages 6351–6355. IEEE, 2021.

[55] Mohammad Kordzanganeh, Pavel Sekatski, Leonid
Fedichkin, and Alexey Melnikov. An exponentially-
growing family of universal quantum circuits. arXiv
preprint arXiv:2212.00736, 2022.

[56] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy,
Ryan Babbush, and Hartmut Neven. Barren plateaus
in quantum neural network training landscapes. Nature
Communications, 9(1):4812, 2018.

[57] Marco Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio,
and Patrick J Coles. Cost function dependent barren
plateaus in shallow parametrized quantum circuits. Na-
ture Communications, 12(1):1–12, 2021.

[58] Michael A Nielsen and Isaac Chuang. Quantum compu-
tation and quantum information, 2002.

[59] Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer.
Effect of data encoding on the expressive power of vari-
ational quantum-machine-learning models. Physical Re-
view A, 103(3):032430, 2021.

[60] QMware. https://qm-ware.com/, 2022.
[61] Mohammad Kordzanganeh, Markus Buchberger, Maxim

Povolotskii, Wilhelm Fischer, Andrii Kurkin, Wilfrid So-

mogyi, Asel Sagingalieva, Markus Pflitsch, and Alexey
Melnikov. Benchmarking simulated and physical quan-
tum processing units using quantum and hybrid algo-
rithms. arXiv preprint arXiv:2211.15631, 2022.

[62] Tyson Jones and Julien Gacon. Efficient calculation of
gradients in classical simulations of variational quantum
algorithms. arXiv preprint arXiv:2009.02823, 2020.

[63] Lucy. https://oxfordquantumcircuits.com/, 2022.
[64] Rigetti. https://qcs.rigetti.com/, 2022.
[65] Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Az-

izzadenesheli, Kaushik Bhattacharya, et al. Neural op-
erator: Learning maps between function spaces. arXiv
preprint arXiv:2108.08481, 2021.

[66] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli,
Burigede Liu, Kaushik Bhattacharya, et al. Fourier neu-
ral operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895, 2020.

[67] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez,
and Peter W. Battaglia. Learning mesh-based simula-
tion with graph networks. In International Conference
on Learning Representations, 2021.

[68] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias
Pfaff, Rex Ying, Jure Leskovec, and Peter Battaglia.
Learning to simulate complex physics with graph net-
works. In International Conference on Machine Learn-
ing, pages 8459–8468. PMLR, 2020.

https://qm-ware.com/
https://oxfordquantumcircuits.com/
https://qcs.rigetti.com/

	Quantum physics-informed neural networks for simulating computational fluid dynamics in complex shapes
	Abstract
	I Introduction
	II Physics-informed neural networks for solving partial differential equations
	III Simulations
	A Classical PINN
	1 Training
	2 Transfer Learning

	B Hybrid Quantum PINN
	1 Variational Quantum Circuit
	2 Training

	IV Discussion
	 References

