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Summary
We develop a low-rank tensor decomposition algorithm for the numerical solu-
tion of a distributed optimal control problem constrained by two-dimensional
time-dependent Navier-Stokes equations with a stochastic inflow. The goal of
optimization is to minimize the flow vorticity. The inflow boundary condition
is assumed to be an infinite-dimensional random field, which is parametrized
using a finite- (but high-) dimensional Fourier expansion and discretized using
the stochastic Galerkin finite element method. This leads to a prohibitively large
number of degrees of freedom in the discrete solution. Moreover, the optimality
conditions in a time-dependent problem require solving a coupled saddle-point
system of nonlinear equations on all time steps at once. For the resulting discrete
problem, we approximate the solution by the tensor-train (TT) decomposition
and propose a numerically efficient algorithm to solve the optimality equations
directly in the TT representation. This algorithm is based on the alternating lin-
ear scheme (ALS), but in contrast to the basic ALS method, the new algorithm
exploits and preserves the block structure of the optimality equations. We prove
that this structure preservation renders the proposed block ALS method well
posed, in the sense that each step requires the solution of a nonsingular reduced
linear system, which might not be the case for the basic ALS. Finally, we present
numerical experiments based on two benchmark problems of simulation of a
flow around a von Kármán vortex and a backward step, each of which has uncer-
tain inflow. The experiments demonstrate a significant complexity reduction
achieved using the TT representation and the block ALS algorithm. Specifically,
we observe that the high-dimensional stochastic time-dependent problem can
be solved with the asymptotic complexity of the corresponding deterministic
problem.
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iterative methods, low-rank solution, PDE-constrained optimization, preconditioning, saddle-point
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1 INTRODUCTION

We consider the numerical simulation of a stochastic optimal control problem (SOCP). More precisely, our goal in
this work is to efficiently solve the optimal control of an incompressible flow problem governed by time-dependent
Navier-Stokes equations with random inputs. This problem can be computationally challenging due to the nonlinear
constraint.1 The computational complexity associated with the problem further stems from the uncertain inputs.2,3 A
viable solution approach to optimization problems with stochastic constraints employs the spectral stochastic Galerkin
finite element method (SGFEM). In particular, the steady-state Navier-Stokes equations were solved with SGFEM in Ref-
erences 4-7. However, this intrusive approach* leads to the so-called curse of dimensionality, in the sense that the number
of expansion coefficients of the discrete solution grows exponentially in the number of random variables and quickly
becomes intractable for direct calculation.2,8,9

It is worth pursuing computationally efficient ways to simulate optimization problems with stochastic constraints
using SGFEMs since the Galerkin approximation yields the best approximation with respect to the energy norm, as well
as a favorable framework for error estimation.10 In order to cope with the curse of dimensionality, we exploit the underly-
ing mathematical structure of the discretized optimality system. Since the weak solution of the parametrized PDE is often
a holomorphic function with respect to the parameters,11 a suitable family of orthogonal polynomials is the mostly used
ansatz. One approach to reduce the curse of dimensionality is to sparsify explicitly the set of polynomials, by bounding,
for example, the total degree.4-6,12-14 Alternatively, one can consider the full Cartesian space of polynomials with bounded
individual degree, but never store the expansion coefficients explicitly. Instead, one approximates the tensor of coeffi-
cients by a low-rank decomposition. We develop a low-rank technique based on recent advances in numerical tensor
methods15,16 for the efficient solution of the SOCP. Our aim in this article is to lift the curse of dimensionality inherent in
the SOCP and allow for the efficient simulations of the model on an average desktop computer. Such simulations would
enhance the understanding of the underlying physical model as the computed data can then be used for the quantification
of the statistics of the system response.

In the last decade, the use of SGFEM discretization with low-rank approximations to solve high-dimensional and
parametrized problems was studied extensively (see References 2,7,17-19 and the references therein). In particular, Refer-
ences 18 and 19 approximate the solution in the canonical tensor format. Later on, compression with the tensor train and
hierarchical tensor formats was carried out. On the other hand, Reference 19 focuses on the convergence rate of approx-
imations by finite sums of rank-1 tensors solution of the problems. Adaptive tensor-train method presented in Reference
17 is aimed at minimizing the error resulting from the numerical approximation of the solution of the SGFEM discretiza-
tion of parameterized PDEs. In Reference 2, the authors consider the numerical solution of Stokes-Brinkman optimal
control problem with random inputs. By employing the SGFEM discretization and the tensor-train format, the article effi-
ciently approximates the numerical solution of the high-dimensional linear system by significantly reducing the storage
requirements of the original problem. In the present article, the authors extend the ideas developed in Reference 2 to the
more difficult case of optimization problems constrained by Navier-Stokes equations with random inputs. Moreover, we
prove well posedness of the approach suggested in Reference 2 under the problem formulation under consideration.

Alternative approaches to tackle optimization problems with stochastic constraints include stochastic collocation
schemes,20-22 as well as Monte Carlo methods.23 These methods are essentially sampling based and nonintrusive. How-
ever, for optimization problems, the SGFEM exhibits superior performance compared with the stochastic collocation
method.9 This is due to the fact that, unlike SGFEM, the nonintrusivity property of the stochastic collocation method is
lost when moments of the state variable appear in the cost functional or when the control is a deterministic function.
On the other hand, Monte Carlo methods are relatively straightforward to implement. However, they generally converge
rather slowly and do not exploit the regularity with respect to the parameters that the solution might have.22

Low-rank tensor methods for optimal control problems with uncertain inputs have also been considered in Reference
24, where the authors focus mainly on a solver for a stochastic optimal control problem with a low-dimensional but
pointwise constrained control. Such problems can be tackled via, for instance, semismooth Newton algorithms.25-27 In
our work, however, we do not consider the case of state- or control- or mixed control-state-constrained problems.28-30

The rest of the article is organized as follows. First, we present in Section 2 the PDE-constrained optimization problem
that we would like to solve, as well as the necessary mathematical concepts and notation on which we shall rely in the rest

*SGFEM techniques are “intrusive” in the sense that the software packages for the associated deterministic problems cannot be directly reused, since
all spatial and stochastic degrees of freedom are coupled.
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BENNER et al. 1655

of our discussion. Next, we proceed to Section 3 to discuss the SGFEM discretization of the problem. Section 4 introduces
the TT decomposition, the (block) ALS algorithms, and the preconditioner, which we use to tackle the high-dimensional
saddle point systems arising from the SGFEM discretization of the optimization problem. Finally, in Section 5, we present
numerical experiments to illustrate the performance of the low-rank approach.

2 PROBLEM STATEMENT AND MATHEMATICAL DESCRIPTION

This article investigates the distributed optimal control of an incompressible flow problem constrained by time-dependent
Navier-Stokes equations with uncertain inflow in an open bounded spatial domain D ⊂ R2 with a piecewise-Lipschitz
boundary Υ = 𝜕D and an outward normal vector n⃗.We denote the spatial coordinates as x = (x1, x2) ∈ D. Let (Ω, ,P) be
a complete probability space, where Ω is the set of outcomes,  ⊆ 2Ω is the 𝜎-algebra of events, and P ∶  → [0, 1] is a
uniform probability measure. Moreover, we consider a finite time interval (0,T) and seek a control function u(x, 𝜔, t) ∶
D × Ω × (0,T) → R2, a velocity field v(x, 𝜔, t) ∶ D × Ω × (0,T) → R2, and a pressure p(x, 𝜔, t) ∶ D × Ω × (0,T) → R that
solve the minimization problem

min
u,v∈L2(D)×L2(Ω)×L2(0,T)

 (u, v) = 1
2
||∇ × v||2 + 𝛽

2
||u||2, (1)

with the norm defined as

||v||2 = ∫
T

0 ∫ ∫D
||v(x, 𝜔, t)||22 dxdP(𝜔) dt,

and u, v, and p are constrained, P-almost surely, through the nonstationary Navier-Stokes equations:

⎧⎪⎪⎨⎪⎪⎩

𝜕tv − 𝜈Δv + (v ⋅ ∇)v + ∇p = u, in D × Ω × (0,T),
−∇ ⋅ v = 0, in D × Ω × (0,T),
v = 𝜽, on Υin × Ω × (0,T), inflow
v = 0, on Υw × Ω × (0,T), wall
𝜈∇v ⋅ n⃗ − pn⃗ = 0, on Υout × Ω × (0,T), outlet
v(x, 𝜔, 0) = 0, in D × Ω.

(2)

Here, we letΥ be decomposed into disjoint parts corresponding to inflowΥin, solid wallΥw, and outflowΥout. The time
derivative is denoted by 𝜕t. Naturally, we assume that ||v|| < ∞, ||u|| < ∞ and ||p|| < ∞. Each of the functions v,u, p is a
random field, since so is the inflow boundary condition 𝜽(x, 𝜔, t) ∶ Υin × Ω × (0,T) → R2, specified below. The regular-
ization parameter 𝛽 in (1) balances between minimization of the vorticity and penalization of the control magnitude. The
cost  (u, v) is a deterministic functional with stochastic arguments u, v, and the parameter 𝜈 is a deterministic kinematic
viscosity.

Our domains of interest are the flow around a cylinder illustrated in Figure 1 and the backward facing step shown
in Figure 2 (cf Reference 31). These are standard benchmarks and illustrate many of the difficulties that arise when
solving Stokes and especially Navier-Stokes control problems.32,33 Furthermore, in our experiments, we use a zero initial
condition and apply instead an exponentially growing stochastic inflow

𝜽(x, 𝜔, t) =
[
𝜅(x, 𝜔)(1 − e−t)

0

]
(see Figures 1 and 2), where 𝜅(x, 𝜔) is a random field on Υin × Ω. The mean field of 𝜅 is set to the corresponding bench-

mark function associated with each of the domains in Figures 1 and 2. The (square integrable) remainder is assumed
to have a convergent Fourier expansion, parametrized by independent identically distributed (i.i.d.) random variables
{𝜉1, 𝜉2,…}. For concreteness, we assume uniformly distributed 𝜉𝓁 ∼  (−1, 1), although we can generalize this to any
zero-mean i.i.d. probability measure. In particular, for the obstacle domain (Figure 1) we assume a parabolic mean inflow,

𝜅(x, 𝜔) = (1 + x2)(1 − x2) +
∞∑
𝓁=1

𝓁−𝛾−1∕2 sin(𝜋𝓁x2)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶𝜃𝓁 (x)

𝜉𝓁(𝜔). (3)
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1656 BENNER et al.

F I G U R E 1 A flow with uncertain inflow past a circular
obstacle [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 2 A flow with uncertain inflow in a backward
step domain [Colour figure can be viewed at
wileyonlinelibrary.com]

The parameter 𝛾 governs the rate of decay of the stochastic Fourier expansion (SFE), and hence it can be referred
to as the smoothness of the random field. The offset 1∕2 is chosen to make the decay rate of the expansion (3) similar
to that of the Karhunen-Lòeve expansion of typical one-dimensional covariance functions, for example, Matérn.17 In
computational practice, we truncate (3) after m ∈ N terms such that the error is sufficiently small:

𝜅m(x, 𝜔) = (1 + x2)(1 − x2) +
m∑
𝓁=1

𝓁−𝛾−1∕2 sin(𝜋𝓁x2)𝜉𝓁(𝜔). (4)

In the backward step domain problem (Figure 2), we use a similar benchmark inflow field33

𝜅m(x, 𝜔) = 4x2(1 − x2) +
m∑
𝓁=1

1
2
𝓁−𝛾−1∕2 sin(2𝜋𝓁x2)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶𝜃𝓁 (x)

𝜉𝓁(𝜔). (5)

In both Equations (4) and (5), the random vector 𝝃 ∶= (𝜉1, 𝜉2,… , 𝜉m) ∶ Ω → Γ ⊂ Rm is characterized by the joint prob-
ability density function 𝜌(𝝃) = 1

2m on the Cartesian joint image Γ = [−1, 1]m. The expectation of any measurable function
f(𝝃) is then given by the integral E[f ] = ∫Γf (𝝃)𝜌(𝝃) d𝝃 <∞.The assumption that 𝜅(x, 𝜔) admits a stochastic representation
as above allows us to transform the stochastic optimal control problem into a deterministic problem that now depends
on the parameter vector 𝝃 ∶= (𝜉1, 𝜉2,… , 𝜉m) ∈ Rm. For brevity, since we consider m as an a priori model parameter, we
always denote 𝜅m by 𝜅 in the rest of the article. Parametrization of (1) and (2) using (4), (5) leads to the following finite
dimensional deterministic optimal control problem:

min
u,v

 (u, v) = 1
2 ∫

T

0 ∫Γ∫D
||∇ × v||22dx𝜌(𝜉)d𝜉dt + 𝛽

2 ∫
T

0 ∫Γ∫D
||u||22 dx𝜌(𝜉) d𝜉 dt, (6)

where now u(x, 𝝃, t), v(x, 𝝃, t) ∶ D × Γ × (0,T) → R2, subject to{
𝜕tv − 𝜈Δv + (v ⋅ ∇)v + ∇p = u, in D × Γ × (0,T),
−∇ ⋅ v = 0, in D × Γ × (0,T), (7)

and the corresponding boundary and initial conditions from (2).
For the numerical simulation of the SOCP given by (6) and (7), we will adopt the so-called optimize-then-discretize

(OTD) strategy, where we first build an infinite dimensional Lagrangian and then consider its variation with respect to
state, pressure, control, and two Lagrange multipliers that can be identified as the adjoint velocity 𝝀 and pressure 𝜇.34,35

We observe that the optimization problem under consideration is nonlinear due to the nonlinearity of the convective term
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BENNER et al. 1657

(v ⋅ ∇)v. Both Newton and Picard iterations have shown to be good iterative solvers to tackle these nonlinear equations.31

Since the Picard iteration has a larger radius of convergence compared with the Newton iteration, our choice in this
contribution is the Picard iteration. We apply the so-called Karush-Kuhn-Tucker procedure31(chap8.2) to (6) and (7) to obtain
the following linear optimality system:36

𝜕tv − 𝜈Δv +
(
v ⋅ ∇

)
v + ∇p = u x ∈ D,
∇ ⋅ v = 0 x ∈ D,

v = 𝜽 x ∈ Υin,

v = 0 x ∈ Υw,

𝜈∇v ⋅ n⃗ − pn⃗ = 0 x ∈ Υout,

v(x, 𝝃, 0) = 0 x ∈ D, (8)

−𝜕t𝝀 − 𝜈Δ𝝀 −
(
v ⋅ ∇

)
𝝀 +

(
∇v

)T
𝝀 + ∇𝜇 = −∇ × (∇ × v) x ∈ D,

∇ ⋅ 𝝀 = 0 x ∈ D,
𝝀 = 0 x ∈ Υw ∪ Υin,

𝜈∇𝝀 ⋅ n⃗ − 𝜇n⃗ = 0 x ∈ Υout,

𝝀(x, 𝝃,T) = 0 x ∈ D, (9)

𝛽u + 𝝀 = 0 x ∈ D, (10)

where v denotes the velocity from the previous Picard iteration. Having solved this system, we update v = v and so on
until convergence.

3 STOCHASTIC GALERKIN DISCRETIZATION OF THE SOLUTION

A finite dimensional system is obtained by making (8)-(10) Galerkin-orthogonal to a finite polynomial subspace in the
parameters 𝝃, the so-called generalized polynomial chaos,37 as well as a finite element basis in x. In many variables, the
polynomial chaos can be introduced in different ways. The most straightforward approach is to use a Cartesian product
of univariate subspaces. Choosing a maximal individual degree d, we construct a space

d ∶= span

(
𝜓j(𝝃) ∶=

m∏
𝓁=1
𝜓

j𝓁
𝓁 (𝜉𝓁) ∶ j𝓁 = 0,… , d − 1, 𝓁 = 1,… ,m

)
, (11)

where 𝜓 j𝓁
𝓁 is a univariate polynomial of degree j𝓁 , and j is the total index of the multivariate polynomial, constructed from

individual indices of univariate polynomials,

j = j1dm−1 + j2dm−2 +…+ jm−1d + jm. (12)

Note that j = 0,… , dm − 1, where dm is indeed the cardinality of the Cartesian space. We assume that the polynomi-
als 𝜓j(𝝃) are orthogonal with respect to the given probability measure, that is, E[𝜓j𝜓j′ ] = 0 for any j𝓁 ≠ j′𝓁 , comprising
j and j′, respectively. In particular, we use Legendre polynomials that are orthogonal with respect to the uniform
measure. Similarly, Jacobi polynomials can be used for beta-distributed random variables, or Hermite polynomials
can be used for the Gaussian measure, as introduced originally by Norbert Wiener38 in the context of turbulence
modeling. The convergence with respect to the degree d can be established by the standard analysis of the univari-
ate polynomial approximation.39 Note that this requires a sufficient smoothness of the solution. It holds specifically
for a flow with minimized vorticity as intended by (1), but the convergence rate may deteriorate for a turbulent
solution.
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1658 BENNER et al.

In this article, we cope with the exponential growth of the cardinality dm using low-rank tensor decompositions (see
Section 4) for approximating directly the discrete expansion coefficients of the solution in a given full Cartesian basis.
This allows us to get rid of the curse of dimensionality, since we never store the full tensor of coefficients explicitly,
but only its low-rank factors. Another choice, which partially alleviates the curse of dimensionality, is the total degree
polynomial space. The cardinality of the total degree space is (m + d)!∕(m!d!), which, for a fixed d, depends polynomially
on m. However, this cardinality might still be rather large, which, together with a complicated sparsity pattern of the
Galerkin matrix, makes the numerical solution expensive. By contrast, iterative tensor product methods (see Algorithm 1)
require subsequent solution of small reduced systems of equations on each tensor factor, which can be more efficient than
assembling and solving a single but large Galerkin system for the total degree space.40

For the spatial discretization, we use the stable P2-P1 Taylor-Hood finite element ansatz,33 consisting of biquadratic
elements {𝜙k(x)}

Nv
k=1 for the velocity, and bilinear elements {𝜑k(x)}

Np

k=1 for the pressure. Specifically, we approximate the
velocity functions v,u,𝝀 in a subspace

Vh = span
{[
𝜙k(x)

0

]
,

[
0
𝜙k(x)

]}Nv

k=1
⊂ H1

0(D)2,

where H1
0(D) is the Sobolev space of functions with derivatives in L2(D), satisfying the homogeneous Dirichlet boundary

conditions on Υw. The pressure functions p, 𝜇 are approximated in a subspace

Qh = span {𝜑k(x)}
Np

k=1 ⊂ L2(D).

Finally, the time derivative is discretized using the implicit Euler scheme on a uniform time grid {tn}
Nt
n=1, tn = 𝜏n, 𝜏 =

T∕Nt. The solutions can then be approximated by the following expansions:

v(x, 𝝃, tn) ∶=
[

v1(x, 𝝃, tn)
v2(x, 𝝃, tn)

]
≈ vh(x, 𝝃, tn) ∶=

dm−1∑
j=0

Nv∑
k=1

[
v̂1(k, j,n)
v̂2(k, j,n)

]
𝜙k(x)𝜓j(𝝃),

p(x, 𝝃, tn) ≈ ph(x, 𝝃, tn) ∶=
dm−1∑

j=0

Np∑
k=1

p̂(k, j,n)𝜑k(x)𝜓j(𝝃), (13)

and similarly for u ≈ uh, 𝝀 ≈ 𝝀h and 𝜇 ≈ 𝜇h, where v̂ and p̂ are sought expansion coefficients. The weak variational
formulation is obtained by projecting (8)-(10) onto the same spaces Vh,Qh, combined with the polynomial subspace d
defined in (11). This gives the following optimality equations:

E∫D

[
vh − vh(x, 𝝃, tn−1)

𝜏
⋅ v′ + 𝜈∇vh ∶ v′ + (vh ⋅ ∇)vh ⋅ v′

−ph(∇ ⋅ v′) − uh ⋅ v′
]

dx𝜓 ′(𝝃) = 0 ∀v′ ∈ Vh, (14)

E∫D

[
(∇ ⋅ vh)p′(x)

]
dx𝜓 ′(𝝃) = 0 ∀p′ ∈ Qh,

E∫D

[
𝝀h − 𝝀h(x, 𝝃, tn+1)

𝜏
⋅ v′ + 𝜈∇𝝀h ∶ v′ − (vh ⋅ ∇)𝝀h ⋅ v′

+[(∇vh)𝝀h

]
⋅ v′ − 𝜇h(∇ ⋅ v′) − ∇vh ⋅ ∇v′]dx𝜓 ′(𝝃) = 0 ∀v′ ∈ Vh, (15)

E∫D
[(∇ ⋅ 𝝀h)p′(x)]dx𝜓 ′(𝝃) = 0 ∀p′ ∈ Qh,

E∫D
[𝛽uh ⋅ v′ + 𝝀h ⋅ v′]dx𝜓 ′(𝝃) = 0 ∀v′ ∈ Vh, (16)

for all 𝜓 ′(𝝃) ∈ d, where we let
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BENNER et al. 1659

vh = vh(x, 𝝃, tn), vh = vh(x, 𝝃, tn),uh = uh(x, 𝝃, tn),
𝝀h = 𝝀h(x, 𝝃, tn), ph = ph(x, 𝝃, tn), 𝜇h = 𝜇h(x, 𝝃, tn)

unless stated otherwise.
To write (14)-(16) in a matrix form, we collect the expansion coefficients from (13) into component coefficient vectors

v̂(j,n) =
[
v̂1(1, j,n)… v̂1(Nv, j,n), v̂2(1, j,n)… v̂2(Nv, j,n)

]⊤
,

p̂(j,n) =
[
p̂(1, j,n)… p̂(Np, j,n)

]⊤
,

û(j,n) =
[
û1(1, j,n)… û1(Nv, j,n), û2(1, j,n)… û2(Nv, j,n)

]⊤
,

�̂�(j,n) =
[
�̂�

1(1, j,n)… �̂�
1(Nv, j,n), �̂�

2(1, j,n)… �̂�
2(Nv, j,n)

]⊤
,

�̂�(j,n) =
[
�̂�(1, j,n)… �̂�(Np, j,n)

]⊤
,

as well as total vectors

ŵ =
[(

v̂(j,n)⊤, p̂(j,n)⊤
)⊤]
, j = 0,… , dm − 1, n = 1,… ,Nt,

û =
[
û(j,n)

]
, j = 0,… , dm − 1, n = 1,… ,Nt, (17)

�̂� =
[(
�̂�(j,n)⊤, �̂�(j,n)⊤

)⊤]
, j = 0,… , dm − 1, n = 1,… ,Nt.

Moreover, we need to introduce the following matrices resulting from the weak bilinear forms with the basis
functions.

• The Laplace matrix for Vh: [L]k,k′ = ∫D∇𝜙k ⋅ ∇𝜙k′ dx, k, k′ = 1,… ,Nv.
• The mass matrix for Vh: [M]k,k′ = ∫D𝜙k𝜙k′dx, k, k′ = 1,… ,Nv.

• The partial discrete divergence operator: [Bz]k,k′ = ∫D𝜑k
𝜕𝜙k′

𝜕xz
dx, z = 1, 2, k = 1,… ,Np, k′ = 1,… ,Nv.

• The convection matrix depending on the given velocity component vector v̂:

[Fv̂]k,k′ = ∫D
𝜙k

[ Nv∑
k′′=1

[
v̂1(k′′)
v̂2(k′′)

]
𝜙k′′ (x)

]
⋅ ∇𝜙k′ dx, k, k′ = 1,… ,Nv. (18)

• The weak derivative (adjoint) matrix depending on the given velocity:

[W z,z′
v̂ ]k,k′ = ∫D

𝜙k

[ Nv∑
k′′=1

v̂z(k′′)𝜕𝜙k′′

𝜕xz′

]
𝜙k′ dx, k, k′ = 1,… ,Nv, z, z′ = 1, 2. (19)

Now the system (14)-(16) can be expressed in the following compact matrix form on the total vectors (17) of solution
coefficients: [𝓜1 0 −𝓚∗

0 𝛽M2 3
⊤

−𝓚 3 0

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶A

[ŵ
û
�̂�

]
⏟⏟⏟

=∶ŷ

=

[0
0
ĝ

]
⏟⏟⏟

=∶b̂

. (20)

Since we use tensor product basis functions, each of the block matrices in A can be represented via Kronecker products.
In particular, the forward and adjoint operators for the time-stochastic-space Navier-Stokes equations can be written as
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1660 BENNER et al.

follows:

𝓚 = ⊗ Idm ⊗ INt +⊗ Idm ⊗ C𝜏−1 +𝓕v̂,

𝓚∗ = ⊗ Idm ⊗ INt +⊗ Idm ⊗ C⊤𝜏−1 +𝓦v̂ −𝓕v̂, (21)

and the mixing terms read

𝓜1 =

[L 0 0
0 L 0
0 0 0

]
⊗ Idm ⊗ INt , 𝓜3 =

[M 0
0 M
0 0

]
⊗ Idm ⊗ INt ,

M2 =
[

M 0
0 M

]
⊗ Idm ⊗ INt , (22)

where2 INt and Idm are identity matrices of the corresponding sizes,

C =
⎡⎢⎢⎢⎣

1
−1 1

⋱ ⋱
−1 1

⎤⎥⎥⎥⎦
comes from the implicit Euler time scheme,

 =

[
𝜈L 0 (B1)⊤
0 𝜈L (B2)⊤

B1 B2 0

]
and  =

[M 0 0
0 M 0
0 0 0

]

are the full spatial Stokes and mass matrices, respectively, and 𝓕v̂,𝓦v̂ are matrices derived from the nonlinear terms,
evaluated at the coefficients v̂ of the previous Picard iterate v. These matrices can be also constructed in a Kronecker
product form using (18) and (19), provided a compatible decomposition of v̂ is available. This will be introduced in the
next section.

The right-hand side vector ĝ depends on the boundary conditions. The stochastic expansion of 𝜅(x, 𝝃) yields the
following tensor form for the inflow function,

�̂� =
⎡⎢⎢⎣
�̂�

1
𝓁

0
0

⎤⎥⎥⎦⊗
m∑
𝓁=0

[(
𝓁−1
⊗
𝓁′=1

e1

)
⊗ e2 ⊗

(
m
⊗

𝓁′=𝓁+1
e1

)]
⊗ gt, (23)

where the vector �̂�1
𝓁 is the discretized spatial function 𝜃𝓁(x) of the inflow (4) or (5), [�̂�1

𝓁]k = 𝜃𝓁(xk
1 , x

k
2) for xk ∈ Υin, and 0

otherwise,

e1 =
[
1 0 … 0

]⊤ ∈ R
d and e2 =

[
0 1 0 … 0

]⊤ ∈ R
d

are the unit vectors resulting from expanding a constant and 𝜉𝓁 as given by (4) in d, and the vector gt is the discretized
time profile of the inflow, [gt]n = 1 − exp(−𝜏n). Now we partition the PDE matrix into blocks, corresponding to inner and
boundary degrees of freedom,

𝓚 =
[
𝓚II 𝓚IB
𝓚BI 𝓚BB

]
,

or, more precisely, (B) denotes the nodes associated with the centers xk of biquadratic elements from Vh belonging to
the inflow boundary, xk ∈ Υin, and (I) denotes all interior and outflow nodes. Then the usual finite element approach is
employed: we eliminate 𝓚IB and 𝓚BI in the left-hand side of (20), replacing 𝓚 by 𝓚II, and construct the right-hand
side from (23) as ĝ = 𝓚IB�̂�.
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BENNER et al. 1661

4 TENSOR TRAIN DECOMPOSITION

Separation of the total index enumerating all degrees of freedom of, for example, the discrete solution in (20) back into
individual indices corresponding to independent variables can be extended from (12) to the space and time variables as
well. Each of the total vectors (17) ŷ = [ŷ(i)], where y stands for w,u, or 𝜼, can also be seen as a (m + 2)-dimensional
tensor with elements ŷ(k, j1,… , jd,n), provided that the total index i is defined consistently,

i = (k − 1)dmNt + j1dm−1Nt +…+ jmnt + n.

The particular order of indices is not important for the concept in general. However, the actual numerical complexity of
the low-rank decompositions introduced further might depend on the order, and certain approaches exist for determining
it adaptively.41,42 For our problem, the particular ordering chosen above is good enough due to the decay of the stochastic
expansion of 𝜅(x, 𝝃), and the corresponding decrease of the “influence” of 𝜉𝓁 for larger 𝓁, as well as the largest dimensions
corresponding to x and t being enumerated by the first and the last indices. To alleviate the curse of dimensionality, we
represent ŷ by the so-called tensor train (TT) decomposition:43

ŷ(k, j1,… , jm,n) =
r0∑

s0=1
…

rm∑
sm=1

y(0)s0
(k)y(1)s0,s1

(j1)… y(m)
sm−1,sm

(jm)y(m+1)
sm

(n). (24)

In practice, the exact equality (24) holds very rarely, and one seeks an approximation of ŷ by the right-hand side of
(24). The auxiliary summation indices s0,… , sm are called rank indices, and their ranges r0,… , rm are called TT ranks.
The factors on the right-hand side of (24) are called TT blocks. The trailing TT blocks are matrices, that is, y(m+1) ∈ Rrm×nt ,
and y(0) can be a matrix of size (2Nv + Np) × r0 or 2Nv × r0, depending on what vector of (17) is approximated. The middle
TT blocks can be seen in three equivalent forms:

• y(𝓁) ∈ Rr𝓁−1×d×r𝓁 is a three-dimensional tensor. Introducing the maximal TT rank r ∶= max𝓁=0,…,mr𝓁 , we can conclude
that the TT blocks contain at most mdr2 + (2Nv + Np + Nt)r elements, that is, a linear amount w.r.t. the dimensional-
ity m. The TT ranks depend on the particular tensor and approximation accuracy. In numerical practice, we aim for
applications that allow a sufficiently accurate TT approximation with r being much smaller than the (dm) cardinality
of the original tensor.

• For a fixed j𝓁 , y(𝓁)(j𝓁) ∈ Rr𝓁−1×r𝓁 is a matrix. In fact, we can omit s𝓁 in (24) and consider the right-hand side as a product
of matrices, parametrized by k, j𝓁 and n. For this reason, the TT decomposition is also known as the matrix product
states44,45 in quantum physics.

• For fixed s𝓁−1, s𝓁 , y(𝓁)s𝓁−1,s𝓁 ∈ Rd is a vector. Similarly, we can say that y(0)s0
and y(m+1)

sm
are vectors. This allows us to rewrite

(24) using Kronecker products:

ŷ =
r0,…,rm∑

s0,…,sm=1
y(0)s0
⊗ y(1)s0,s1

⊗…⊗ y(m+1)
sm
. (25)

Note that the left-hand side is now a vector too, compatible with (17).

The latter notation (25) can be easily generalized to break the curse of dimensionality of matrices acting on ŷ, such as
those in (20). Namely, we introduce a matrix TT decomposition

A =
R0,…,Rm∑

s0,…,sm=1
A(0)

s0
⊗ A(1)

s0,s1
⊗…⊗ A(m+1)

sm
(26)

with some matrix TT ranks R0,… ,Rm. For example, each of the mixing matrices (22) is a particular case of the
matrix TT decomposition with R0 = … = Rm = 1 and A(m+1) = INt , A(𝓁) = Id for 𝓁 = 1,… ,m, and A(0) being one of
the leftmost block matrices in (22). However, (26) can be extended also to (21) with larger R0,… ,Rm, as we show in
Section 4.1.
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1662 BENNER et al.

Equipped with (25) and (26), we can implement the so-called tensor arithmetics43 efficiently. Linear combinations of
vectors in the form (25), scalar, Hadamard, or matrix-vector products Aŷ, can be constructed in the TT format exactly,
block by block, without ever expanding the Kronecker products explicitly. However, TT ranks of such exact representation
can be still unnecessarily large for the desired accuracy, for example, TT ranks of Aŷ are equal to the products R𝓁r𝓁 . In
this case, the TT decomposition can be recompressed down to quasi-optimal TT ranks for a given threshold 𝜀 > 0 using
the truncated singular value decompositions (SVD) applied to the matrix forms of TT blocks, with the total complexity
being linear in m and polynomial in r and R ∶= max𝓁R𝓁 . We refer to References 43 and 44 for details on these procedures.

4.1 TT format of the convection matrix

Since we can represent any tensor in a TT decomposition with sufficiently large TT ranks, we assume now that the
expansion coefficients (13) of the velocity vh of the previous Picard iterate are written similarly to (25) as follows:

v̂ =
r0,…,rm∑
s0,…,sm

v(0)s0
⊗ v(1)s0,s1

⊗…⊗ v(m)
sm−1,sm

⊗ v(m+1)
sm
. (27)

Note that v(0)s0
∈ R2Nv contains coefficients corresponding to the Vh space.

Considering only the nonlinear term (vh ⋅ ∇)vh ⋅ v′ from (14), we can write the matrix element of 𝓕v̂, replacing vh by
𝜙k(x)𝜓j(𝝃) and v′ by 𝜙k′ (x)𝜓j′ (𝝃), as follows:

[Fn
v̂]kj,k′j′ = E∫D

𝜙k𝜓j

[∑
k′′,j′′

[
v̂1(k′′, j′′,n)
v̂2(k′′, j′′,n)

]
𝜙k′′𝜓j′′

]
⋅ ∇𝜙k′ dx𝜓j′ ,

where n is the current time step. Due to linearity of the TT format (27) w.r.t. v(0), we can replace

[
v̂1(k′′, j′′,n)
v̂2(k′′, j′′,n)

]
=

r0,…,rm∑
s0,…,sm

[
v(0)1s0

(k′′)
v(0)2s0

(k′′)

]
v(1)s0,s1

(j′′1 )… v(m+1)
sm

(n),

and, using (18), we obtain

[Fn
v̂]j,j′ =

r0,…,rm∑
s0,…,sm

Fv(0)s0
E

[dm−1∑
j′′=0
𝜓j ⋅ 𝜓j′′v(1)s0,s1

(j′′1 )… v(m)
sm−1,sm

(j′′m) ⋅ 𝜓j′

]
v(m+1)

sm
(n).

Due to the Cartesian structure of (11), we can introduce a matrix of trilinear form

Hj′′𝓁 (j𝓁 , j
′
𝓁) = ∫

1

−1
𝜓

j𝓁
𝓁 (𝜉𝓁)𝜓

j′𝓁
𝓁 (𝜉𝓁)𝜓

j′′𝓁
𝓁 (𝜉𝓁)

1
2

d𝜉𝓁 , Hj′′𝓁 ∈ R
d×d, (28)

such that

Fn
v̂ =

r0,…,rm∑
s0,…,sm

Fv(0)s0
⊗
⎡⎢⎢⎣

d−1∑
j′′1 =0

Hj′′1 v(1)s0,s1
(j′′1 )

⎤⎥⎥⎦⊗…⊗

[ d−1∑
j′′m=0

Hj′′m v(m)
sm−1,sm

(j′′m)

]
⋅ v(m+1)

sm
(n).

Finally, we notice that Fn
v̂ applies to each individual time step n, and hence the entire matrix is block diagonal w.r.t. the

time dimension,

𝓕v̂ =
r1,…,rm∑

s0,…,sm=1

⎡⎢⎢⎣
Fv(0)s0

0 0
0 Fv(0)s0

0
0 0 0

⎤⎥⎥⎦⊗…
⎡⎢⎢⎣

d−1∑
j′′𝓁=0

Hj′′𝓁 v(𝓁)s𝓁−1,s𝓁 (j
′′
𝓁 )
⎤⎥⎥⎦…⊗ diag(v(m+1)

sm
). (29)
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BENNER et al. 1663

Note that this is exactly the matrix TT decomposition (26) with TT ranks R0 = r0,… ,Rm = rm. Adding the two linear
terms in (21), we can conclude that if the velocity coefficients are represented in the TT format (27) with the maximal
TT rank r, the forward Navier-Stokes matrix 𝓚 can be represented in the matrix TT format with the maximal TT rank
R = r + 2.

The right-hand side ĝ = 𝓚IB�̂� in (20) must be recomputed in every Picard iteration, since 𝓚IB carries the correspond-
ing (new) part 𝓕IB. This can be achieved using the fast TT-structured matrix-vector product.43

The adjoint convection matrix can be constructed similarly, using (19):

𝓦v̂ =
r1,…,rm∑

s0,…,sm=1

⎡⎢⎢⎢⎣
W1,1

v(0)s0

W1,2
v(0)s0

0

W2,1
v(0)s0

W2,2
v(0)s0

0
0 0 0

⎤⎥⎥⎥⎦⊗…
⎡⎢⎢⎣

d−1∑
j′′𝓁=0

Hj′′𝓁 v(𝓁)s𝓁−1,s𝓁 (j
′′
𝓁 )
⎤⎥⎥⎦…⊗ diag(v(m+1)

sm
). (30)

4.2 Alternating linear solver

The discretized Oseen equation given by (20) is a large linear system in y and needs to be solved keeping all the com-
ponents in the TT format in order to keep the storage requirements low. A state of the art approach to this problem
is to use alternating tensor product algorithms.44,46,47 Given the linear system Ay = b, we iterate over 𝓁 = 0,… ,m + 1
and seek only the elements of y(𝓁) in each step, while the other TT blocks are fixed. Again, since the TT format (24) is
linear w.r.t. the elements of each TT block, there exists a matrix Y𝓁 (37) such that y = Y𝓁 ⋅ vec(y(𝓁)), where vec(y(𝓁)) is
a vector of all elements of the TT block y(𝓁). This renders Ay = b an overdetermined system AY𝓁 ⋅ vec(y(𝓁)) = b w.r.t.
the elements of y(𝓁). This system is resolved via a projection onto Y𝓁 , such that y(𝓁) is computed from a smaller system(

Y⊤𝓁 AY𝓁
)

vec(y(𝓁)) = Y⊤𝓁 b. Due to the linearity of the TT format, this method was called the alternating linear scheme
(ALS).47 However, the simple ALS algorithm can converge very slowly, and the TT ranks of the representation are fixed
and cannot be adapted if it turns out that they were underestimated. More efficient extensions reduce the problem to
computing two TT blocks y(𝓁), y(𝓁+1) simultaneously (the density matrix renormalization group [DMRG]46,48) or augment
the projection matrices Y𝓁 with a partial TT approximation of the residual (the alternating minimal energy (AMEn)
algorithm49).

However, the standard ALS method is not immediately applicable to our matrix A from (20). First, the matrix A is
indefinite, and hence its Galerkin projection can be degenerate.

Example 1. Consider

A =

[1 0 1
0 1 1
1 1 0

]
and Y𝓁 =

[0
0
1

]
.

One can readily verify that Y⊤𝓁 AY𝓁 = 0.

Instead of projecting the entire matrix A, we employ the so-called block TT format50 and project each submatrix of A
separately, which will be explained below.

Second, the velocity and pressure vectors have different sizes. Fortunately, this issue can be circumvented by
decoupling of the momentum and kinematic equations, which is a well-established technique in computational fluid
dynamics.51 This stems from the Lagrange multiplier role of the pressure in the divergence-free constraint for the veloc-
ity. Moreover, the empirical Galerkin projection of the pressure gradient (which is implicitly realized in the ALS method)
is often exactly zero for closed flows.52,53 In general, this is not the case, and the pressure correction should be chosen
judiciously52 in the standard model reduction framework with a precomputed basis. However, the ALS algorithm, car-
rying out several iterations, can be seen as an “iterative” model reduction, where the basis v(0) is refined in the course of
computations. This procedure can be also combined with the outer Picard iteration. This allows us to design a simpler
Chorin-type approach36 that is more suitable for the TT approximations.

First, fixing the velocity coefficients, the first row of (20) becomes an overdetermined equation on the pressure
coefficients,

−B⊤p̂ = Kv̂ + ĝv − M3û,
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1664 BENNER et al.

where

B =
[
B1 B2]⊗ Idm ⊗ INt ,

K =
[
𝜈L 0
0 𝜈L

]
⊗ Idm ⊗ INt +

[
M 0
0 M

]
⊗ Idm ⊗ C𝜏−1 + F v̂, (31)

F v̂ =
r1,…,rm∑

s0,…,sm=1

[
Fv(0)s0

0
0 Fv(0)s0

]
⊗…

⎡⎢⎢⎣
d−1∑
j′′𝓁=0

Hj′′𝓁 v(𝓁)s𝓁−1,s𝓁 (j
′′
𝓁 )
⎤⎥⎥⎦…⊗ diag(v(m+1)

sm
),

M3 =
[

M 0
0 M

]
⊗ Idm ⊗ INt ,

and ĝv is a subvector of ĝ corresponding to the velocity elements only. Solving this system in the least squares sense gives
the pressure Poisson equation,51

p̂ =
(

BB⊤
)−1B

(
−Kv̂ − ĝv + M3û

)
, (32)

and similarly

�̂� =
(

BB⊤
)−1B

(
−K∗�̂� + M1v̂

)
, (33)

where K∗ and M1 are the “velocity” submatrices of 𝓚∗ and 𝓜1, respectively, constructed similarly to (31). Now we cast
these pressure components to the right-hand sides of the corresponding velocity equations and obtain a KKT system with
blocks of the same size, [M1 0 −K∗

0 M2 M⊤
3

−K M3 0

][v̂
û
�̂�

]
=
⎡⎢⎢⎣

B⊤�̂�
0

ĝv + B⊤p̂

⎤⎥⎥⎦ . (34)

The consequence is 2-fold: all solution components are of the same size 2Nv ⋅ dmNt now, and hence are suitable for the
block storage introduced below, and moreover, the matrices K,K∗, coming from the discretization of diffusion-convection
equations, are positive definite.

Let us now focus on the block AMEn algorithm for solving (34). We denote the components of the solution by ŷ𝜄, that
is, ŷ1 = v̂, ŷ2 = û, and ŷ3 = �̂�. We approximate all components simultaneously by a TT format with all the same TT blocks
except the 𝓁th block for some 𝓁 = 0,… ,m + 1, which actually carries the enumerator 𝜄 = 1, 2, 3:

ŷ𝜄 =
r0,…,rm∑

s0,…,sm=1
y(0)s0
⊗…⊗ ŷ(𝓁)s𝓁−1,s𝓁 ,𝜄 ⊗ y(𝓁+1)

s𝓁 ,s𝓁+1
⊗…⊗ y(m+1)

sm
. (35)

Without loss of generality, we can let s−1 = sm+1 = 1 to make ŷ(𝓁)s𝓁−1,s𝓁 ,𝜄 well defined for 𝓁 = 0,m + 1.
The block TT decomposition (35) can be initialized with 𝜄 placed in any TT block, but it can also be moved to a different

TT block in the course of computations.50 For example, suppose we need to replace 𝜄 into y(𝓁+1). We can introduce a matrix
Ŷ (𝓁) with elements

Ŷ (𝓁)(s𝓁−1j𝓁 , 𝜄s𝓁) ∶= ŷ(𝓁)s𝓁−1,s𝓁 ,𝜄(j𝓁),

with j𝓁 replaced by k or n as appropriate and compute its SVD

Ŷ (𝓁) = UΣV⊤ ≈ Ur′𝓁Σr′𝓁 V⊤r′𝓁
,

truncated up to a rank r′𝓁 and/or an accuracy tolerance ||Σ − Σr′𝓁 || < 𝜀||Σ||. Next, we construct new TT blocks
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BENNER et al. 1665

y(𝓁)s𝓁−1,s′𝓁
(j𝓁) = U(s𝓁−1j𝓁 , s′𝓁), ŷ(𝓁+1)

s′𝓁 ,s𝓁+1,𝜄
=

r𝓁∑
s𝓁=1

Σ(s′𝓁 , s
′
𝓁)V

⊤(s′𝓁 , 𝜄s𝓁)y
(𝓁+1)
s𝓁 ,s𝓁+1

, (36)

where s′𝓁 = 1,… , r′𝓁 . Note that these TT blocks constitute a block TT decomposition similar to (35), but with 𝓁 replaced
by 𝓁 + 1. Similarly we can move 𝜄 into y(𝓁−1).

Thus, in the 𝓁th step of the ALS algorithm, we can always ensure that the 𝓁th TT block carries 𝜄 as shown in (35). We
can construct the so-called frame matrix

Y𝓁 =

[ ∑
s0,…,s𝓁−2

y(0)s0
⊗…⊗ Y (𝓁−1)

s𝓁−2

]
⊗ I ⊗

[ ∑
s𝓁+1,…,sm

Y (𝓁+1)
s𝓁+1

⊗…⊗ y(m+1)
sm

]
, (37)

where

Y (𝓁−1)
s𝓁−2

=
[

y(𝓁−1)
s𝓁−2,1

… y(𝓁−1)
s𝓁−2,r𝓁−1

]
, Y (𝓁+1)

s𝓁+1
=
[

y(𝓁+1)
1,s𝓁+1

… y(𝓁+1)
r𝓁 ,s𝓁+1

]
,

which can be seen as the block TT format (35) with ŷ(𝓁) replaced by the identity. Note that (37) is a particular case of
the matrix TT format (26), and hence it can be multiplied with the TT representations of K,M1,M2, or M3 efficiently.47

This allows us to generalize the ALS algorithm to a block ALS algorithm2 by projecting the KKT system of momentum
equations (34) block by block,

⎡⎢⎢⎣
M̂1 0 −K̂∗

0 𝛽M̂2 M̂T
3

−K̂ M̂3 0

⎤⎥⎥⎦ vec(ŷ(𝓁)) =
⎡⎢⎢⎣

Y⊤𝓁 B⊤�̂�
0

Y⊤𝓁
(
ĝv + B⊤p̂

)⎤⎥⎥⎦ , (38)

which defines the elements of ŷ(𝓁). Here, Â = Y T
𝓁 AY𝓁 for A ∈ {K,M1,M2,M3} are the submatrices projected onto the

frame matrix (37) in the Galerkin sense.
Since K,K∗ are discretized diffusion-convection operators, we can prove that the block-reduced system (38)

is nonsingular, and hence that, in contrast to the simple ALS algorithm, the block ALS method is well
posed.

Theorem 1. Suppose that the symmetric parts of K and K∗ are positive definite, K + K⊤ > 0, K∗ + K∗⊤ > 0. Then the
reduced matrix in (38) is invertible.

Proof. Due to the Poincaré theorem, the eigenvalues of an orthogonal projection of a symmetric matrix interlace with
the eigenvalues of the original matrix. In particular,

𝜆min(K̂ + K̂⊤) = 𝜆min
(

Y⊤k (K + K⊤)Yk
) ≥ 𝜆min(K + K⊤) > 0,

where 𝜆min(⋅) is the minimal (real) eigenvalue of a matrix. We also use the fact that Yk is orthogonal, which is ensured by
SVD (36) in the course of the ALS iteration†. So, the symmetric part of K̂ (as well as of K̂∗) is positive definite. Moreover,
by the same interlacing theorem we have that M̂1 ≥ 0 and M̂2 > 0. Now we employ [ 54, theorem 3.2]: for the KKT matrix
to be invertible, it is sufficient to have a full rank matrix of constraints

[
−K̂ M̂3

]
and

ker
[

M̂1 0
0 𝛽M̂2

]
⏟⏞⏞⏞⏟⏞⏞⏞⏟

M̂12

∩ ker
[
−K̂ M̂3

]
= {0},

where ker(⋅) is the kernel of a matrix. The first condition is fulfilled since K̂ is invertible. To verify the second criterion,
consider a vector in the kernel of the constraints, which can be written as

†Indeed, the new TT block y(𝓁) in (36) is produced from an orthogonal matrix of singular vectors U, and hence∑
s𝓁−1

(y(𝓁)s𝓁−1 ,s𝓁 )
T y(𝓁)s𝓁−1 ,s′𝓁

= (U⊤U)s𝓁 ,s′𝓁
= Is𝓁 ,s′𝓁

. So, we just need to initialize (35) with the same property. See Reference 43 for more details.
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1666 BENNER et al.

w =
[

y
u

]
=
[

K̂−1M̂3u
u

]
, ∀u ≠ 0.

Now let us check if it belongs to the kernel of the other matrix:

w⊤
[

M̂1 0
0 𝛽M̂2

]
w = u⊤M̂⊤

3 K̂−⊤M̂1K̂−1M̂3u + 𝛽u⊤M̂2u > 0,

since u⊤M̂2u > 0, while the first term is nonnegative. Together with positive semidefiniteness of M̂12, this yields that w is
not in its kernel. ▪

As Theorem 4.1 shows, the block ALS algorithm avoids mixing of different blocks in (34) and hence excludes Example
1. A rigorous convergence proof of ALS is a much more difficult problem, and usually only a local convergence can be
established,55 while the algorithm converges rapidly from a fairly general initial guess in practice. Nevertheless, we believe
that the consistency provided by Theorem 1 is an important part of justification of the approach.

Remark 1. In principle, the Chorin iteration (32)-(34) can be performed as is, but we observed a faster convergence if the
TT blocks v(0), 𝜆(0) of the velocity variables are made divergence free. This can be satisfied efficiently by modifying only
the reduced KKT system (38) for 𝓁 = 0, that is, we solve

⎡⎢⎢⎢⎢⎢⎣

M̂1 0 0 −K̂∗ −B̂⊤
0 0 0 −B̂ 0
0 0 𝛽M̂2 M̂T

3 0
−K̂ −B̂⊤ M̂3 0 0
−B̂ 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

v̂
𝛿p
û
�̂�
𝛿𝜇

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
⊤0

(
B⊤�̂�

0

)
0

⊤0
(

ĝv + B⊤p̂
ĝp

)
⎤⎥⎥⎥⎥⎥⎦
, (39)

where B̂ = Ir0 ⊗
[
B1 B2] is the projected divergence matrix, and ĝp is the subvector of ĝ corresponding to pressure

elements only and assemble the new TT block ŷ(0) =
[
v̂ û �̂�

]
without the auxiliary pressure vectors 𝛿p, 𝛿𝜇 (they vanish

as the iteration converges). All other ALS steps, that is, 𝓁 = 1,… ,m + 1, are carried out solving only the momentum
equations (38).

4.3 Preconditioning

Although the reduced system is much smaller than the original problem, it might still be rather large for a “naive” treat-
ment, for example, (39) is of size (3Nv + 2Np)r0. We solve it using GMRES, together with a preconditioner introduced
in References 2 and 56, which is based on the Schur complement approximation. The reduced matrix (39) admits a
(straightforwardly verifiable) decomposition

⎡⎢⎢⎣
̂1 0 −̂∗

0 𝛽M̂2 ̂T
3

−̂ ̂3 0

⎤⎥⎥⎦ =
[I ∗ ∗

I
I

]⎡⎢⎢⎣
−Ŝ

𝛽M̂2 ̂T
3

−̂ ̂3 0

⎤⎥⎥⎦ , (40)

where Ŝ = ̂∗ + ̂1̂−1̂3(𝛽M̂2)−1̂T
3 is the Schur complement. We precondition (39) by the second (antitriangular)

factor from (40). However, ̂ and Ŝ are still large and must be approximated.
The first matrix has the Kronecker form

̂ = ⊗ Ir0 +⊗ Ĉ +
r0∑

s=1
s ⊗ Ĥs,

where Ĉ, Ĥs are partial projections of the Euler and convection (29) matrices onto
∑

s1,…,sm
Y (1)

s1
⊗…⊗ y(m+1)

sm
. We

approximate ̂ by the following Sylvester operator:

̃ =

(
 +

r0∑
s=1

tr(Ĥs)
r0

⋅ s

)
⊗ Ir0 +⊗ Ĉ, (41)
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BENNER et al. 1667

where tr(Ĥs)∕r0 is an average of the eigenvalues of Ĥs. Now ̃ can be inverted by the Bartels-Stewart method, since Ĉ is
small and can be easily Schur factorized.

The Schur complement Ŝ is approximated by a factorized form,56

̃ =
(̂∗ + 1

c
̂1

) ̂−1 (̂ + c ⋅ ̂3(𝛽M̂2)−1̂T
3
)
, (42)

where c > 0 is a normalization constant. Traditionally, it is proposed2,56 to set c =
√
𝛽, and this has proved to be the

optimal choice for the tracking objective function. However, for the vorticity norm function, the optimal c might differ.
We look for c that minimizes the residual of the system (̃−1Ŝ)u = ̃−1f with a random right-hand side f after five GMRES
iterations. Since it is difficult to differentiate the GMRES residual with respect to c, we employ the zero-order golden
section optimization algorithm,57 initialized with an interval log10c ∈ [log10

√
𝛽 − 6, log10

√
𝛽 + 6]. It is sufficient to carry

out this procedure only in the first Picard iteration, since the optimal c does not change much in the latter iterations. We
also approximate the factors in the brackets in (42) similarly to (41). The full procedure is summarized in Algorithm 1.

Algorithm 1. Block ALS iteration for solving parametric inverse Navier-Stokes equations in the TT format

1: Initialize v̂ = û = �̂� = 0 and the block TT format (35) with 𝜄 in ŷ(0).
2: for iter=1,2,…until convergence do
3: Construct nonlinear terms  v̂ and  v̂ as shown in (29), (30).
4: Compute the pressure components as shown in (32) and (33).
5: Assemble and solve the projected system (39).
6: Compute SVD of ŷ(0) and move 𝜄 to y(1) as shown in (36).
7: for 𝓁 = 1, 2… ,m + 1,m,… , 1 do
8: Assemble and solve the projected system (38).
9: Compute SVD of ŷ(𝓁).

10: if ˜𝓁 is increasing˜ then
11: Move 𝜄 to y(𝓁+1) as shown in (36).
12: else
13: Move 𝜄 to y(𝓁−1) analogously.
14: end if
15: end for
16: end for

5 NUMERICAL RESULTS

This research made use of the Balena High Performance Computing (HPC) Service at the University of Bath. We have
implemented the computational codes on the basis of the MATLAB TT-Toolbox58 and the T-IFISS 1.1 toolbox59 and run
on one core of Balena, an Intel E5-2650 v2 CPU.

5.1 Flow around an obstacle

In the first experiment, we benchmark Algorithm 1 on the Karman vortex problem of simulating a flow in the obstacle
domain shown in Figure 1.

5.1.1 Estimation of errors

The model is influenced by different sources of error. However, one is typically interested in the total error and
the corresponding numerical cost. We begin with investigating different types of error, in order to equilibrate them
in the complexity experiment. Throughout these experiments, the model parameters are fixed to the following
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1668 BENNER et al.

values: viscosity 𝜈 = 10−3, final time T = 20, regularization parameter 𝛽 = 10−2, and the decay rate of the stochastic
expansion 𝛾 = 2.5. Moreover, the polynomial degree in the stochastic Galerkin basis (11) is set to d = 8.

Spatial discretization error.
In order to determine how the solution converges with the spatial grid refinement, we further fix the number of stochastic
variables m = 0 (ie, solve the deterministic problem), the number of time steps Nt = 2048, and the TT truncation threshold
𝜀 = 10−5 in Algorithm 1. We compute the mean square vorticity ||∇ × v||2L2() and the mean square mass of the velocity,||v||2L2() for different numbers of spatial grid refinements nref. The results are shown in Table 1(left).

We deduce the empirical convergence rate 𝜖nref = C ⋅ 2−p⋅nref using Runge's rule:

p = log2

[
Qnref − Qnref+1

Qnref+1 − Qnref+2

]
, C =

|Qnref − Qnref+1||Qnref+2| ⋅
2p⋅nref

1 − 2−p ,

where Qnref is a quantity of interest
(||∇ × v||2L2() or ||v||2L2()

)
computed with the refinement level nref. We see that the

largest relative error is attained for the vorticity and is of the form

𝜖nref = 1.85 ⋅ 10−3 ⋅ 2−1.9⋅nref . (43)

This agrees with the second order of approximation of the P1 finite elements for twice differentiable functions.
The number Nv of the P2 basis functions for each velocity component, the number Np of the P1 basis functions for

the pressure, as well as the total number of spatial degrees of freedom in the KKT system Nx = 6Nv + 2Np are shown in
Table 2.

Time discretization error.
Now we fix nref = 2 and vary the number of time steps in the Euler scheme instead. From Table 1(right), we confirm the
first order of convergence of the implicit Euler scheme:

𝜖Nt = 0.5404 ⋅
1

Nt
. (44)

T A B L E 1 Vorticity and mass of the solution for different spatial grid levels (left) and numbers
of time steps (right) and the empirical convergence rate parameters p and C

nref ||𝛁 × v||2
L2()

||v||2
L2()

Nt ||𝛁 × v||2
L2()

||v||2
L2()

1 38.3504 8.058752 1024 38.3746 8.06114

2 38.3645 8.059017 2048 38.3645 8.05901

3 38.3682 8.059087 4096 38.3594 8.05795

p 1.89 1.91 p 1.00 1.00

C 1.85⋅10−3 1.69⋅10−4 C 0.5404 0.5404

T A B L E 2 Sizes of the space discretization
matrices for different spatial grid levels

nref 1 2 3

Nv 3604 14 152 56 080

Np 934 3604 14 152

Nx 23 492 92 120 364 784
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BENNER et al. 1669

F I G U R E 3 Relative errors
in the solution for different TT
approximation thresholds (left)
and numbers of stochastic
variables (right) [Colour figure
can be viewed at
wileyonlinelibrary.com]

TT approximation error.
In this experiment, we fix nref = 2, Nt = 2048, and vary the TT approximation threshold 𝜀 in Algorithm 1 from 10−3 to
10−7. We compare the velocity v𝜀 and the control u𝜀, computed for the given tolerance 𝜀, with the reference solutions
v∗,u∗, computed with 𝜀 = 10−8. The results are shown in Figure 3(left).

We see that the dominant error occurs in the control component. The least squares log-linear fit gives the following
dependence:

𝜖𝜀 = 0.13 ⋅ 𝜀. (45)

Stochastic parametrization error.
The exact stochastic inflow is an infinite dimensional random field. For computational purposes, we parametrize it by a
truncated stochastic expansion of 𝜅. This, however, introduces an additional error, corresponding to the truncated tail of
the expansion. In Figure 3(right), we vary the number of random variables m and plot the relative difference of the velocity
and the control variance with respect to the reference solutions var(v∗), var(u∗), computed with m = 8. Again, the error
is dominated by the control component. Although the decay rate in the inflow is proportional to m−3, the convergence of
the variance looks more like exponential. The least squares log-linear fit gives

𝜖m = exp(−0.8448 ⋅ m − 3.011). (46)

5.1.2 Total error-performance test

Equipped with the quantitative error estimates (43)-(46), we can equilibrate all errors. Namely, we vary only nref and com-
pute the corresponding space discretization error 𝜖nref . Then we assume 𝜖Nt = 𝜖𝜀 = 𝜖m = 𝜖nref and set the other parameters
through the inverses of the dependencies (44)-(46):

Nt = 2⌈log2(0.5404)−log2(𝜖)⌉,
𝜀 = 7.7 ⋅ 𝜖,

m = ⌈−2.7256 ⋅ log10(𝜖) − 3.5639⌉.
In Figure 4, we show the total CPU times vs the equilibrated error 𝜖 (realized by different nref), as well as the maximal

TT rank of the solution.
We can observe that the CPU time grows proportionally to 𝜖−2. Qualitatively, this is the complexity of the deter-

ministic problem: due to the second order of approximation in space, the number of spatial degrees of freedom for a
two-dimensional space Nx = (h−2) is of the order of the reciprocal of the discretization error, whereas the first order
of approximation in time implies Nt = (𝜖−1). The total cost of the deterministic time-dependent problem is (NxNt) =(𝜖−2). This demonstrates that the tensor product methods can solve the stochastic time-dependent problem with the
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1670 BENNER et al.

F I G U R E 4 Total CPU time (left) and TT rank (right) vs total approximation error [Colour figure can be viewed at
wileyonlinelibrary.com]

asymptotic complexity of the deterministic problem (or the time-dependent problem with the asymptotic complexity of
the stationary problem36).

On the other hand, the cost of a straightforward solution of the stochastic problem is (NxNtN𝜉), where N𝜉 is the
number of degrees of freedom introduced in the stochastic variables. A traditional Monte Carlo approach would involve
N𝜉 = (𝜖−2), and hence the total cost of the order of 𝜖−4. Quasi Monte Carlo or sparse polynomial chaos techniques can
reduce N𝜉 to (𝜖−1), and the total cost to (𝜖−3), which is still asymptotically larger than the cost of the TT approach.

5.1.3 Influence of the control

The reduction power of the tensor decompositions stems from their low storage, in particular, low TT ranks for the desired
accuracy. The tensor ranks are hugely related to the structure of the solution. In particular, it is hard to expect low TT
ranks for a turbulent flow, which develops for high Reynolds numbers in absence of the control. It is the inverse problem,
designed in order to impose an additional structure, that allows to keep the TT ranks of the controlled solution low. In
Figure 5, we compare mean flow streamlines in the forward problem (uncontrolled flow) and in the inverse problem.
We see that the vorticity-minimizing control can efficiently enforce the laminar structure of the flow. The variance of
the controlled flow velocity is shown in Figure 6, and the mean control is shown in Figure 7. As expected, the control is
localized around the obstacle.

To investigate the influence of the regularization parameter on the flow, we increase the viscosity to 𝜈 = 10−2 such
that the optimal control problem with a large parameter 𝛽 = 102 becomes feasible. The velocity magnitudes for 𝛽 = ∞,
𝛽 = 102, and 𝛽 = 10−2 are shown in Figure 8. Notice how the flow becomes more laminar as more control is applied.

5.1.4 Influence of the model parameters

Finally, we investigate how the performance of the TT algorithm is affected by different model parameters. We vary the
regularization parameter 𝛽, the rate of decay in the stochastic expansion of 𝜅 of the inflow 𝛾 , and the viscosity 𝜈. The
computational times and TT ranks are shown in Figures 9,10, and 11, respectively. The unchanged parameters are set to
their default values listed in the beginning of Section 5.1.1. Moreover, we set the spatial discretization level nref = 2, and
the other approximation parameters accordingly, as derived in Section 5.1.2.

We see that the lowest cost is attained at intermediate values of the regularization parameter. For smaller 𝛽, the velocity
is driven closer to the stationary field. However, our scheme computes the difference between the stationary field and the
actual velocity. Similarly to the solution error in iterative methods, the smaller this difference is in magnitude, the more
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BENNER et al. 1671

F I G U R E 5 Velocity magnitude of the mean uncontrolled (top) and controlled (bottom) flows with 𝛽 = 10−2 at t = 20, 𝜈 = 10−3 [Colour
figure can be viewed at wileyonlinelibrary.com]

F I G U R E 6 Magnitude of the variance of the controlled velocity at t = 20, 𝜈 = 10−3 [Colour figure can be viewed at
wileyonlinelibrary.com]

complicated and oscillatory structure it has. This leads to larger TT ranks in the limit of small 𝛽, and consequently larger
computing cost.

On the other hand, when 𝛽 is large, the control becomes too weak to drive the solution away from the uncontrolled
flow. The solution starts to manifest turbulent behavior, which increases the TT ranks as well. Moreover, a stronger influ-
ence of the nonlinear term leads to more Picard iterations, such that the total computational time increases further. The
best scenario for the TT solver is therefore the balanced regularization, which corresponds to a sufficient, but not excessive
control.

The rate of decay in the Fourier expansion (4) is governed by the covariance function of the random field. Highly
correlated field can be approximated by fewer independent random quantities, which corresponds to a faster decay, that
is, larger 𝛾 . Smaller 𝛾 means that more stochastic variables have a strong influence on the solution. Figure 10 shows that
the computational cost is inversely proportional to the decay rate.

On the other hand, from Figure 11, we can observe that the TT scheme is quite robust with respect to the Reynolds
number. In particular, the solution has the same TT ranks for the viscosity ranging from 10−4 to 10−2. The computational
time grows logarithmically with the Reynolds number. This is mainly due to the GMRES solver for (39), which needs
more iterations for more convection-dominated problems.
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F I G U R E 7 Magnitude of the mean control signal at t = 20, 𝜈 = 10−3 [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 8 Velocity magnitude of the mean uncontrolled (top) and controlled flows with 𝛽 = 102 (middle) and 𝛽 = 10−2 (bottom) at
t = 20, 𝜈 = 10−2 [Colour figure can be viewed at wileyonlinelibrary.com]

5.2 Backward step domain with uncertain inflow

Additionally, we test our solver on another benchmark problem, the backward step domain (see Figure 2). As most results
for this problem are qualitatively very similar to the flow around an obstacle, we only report a small number of test
results. The inflow field at the leftmost boundary Υin is given in (5). We choose the same other parameters as in the first
experiment: viscosity 𝜈 = 10−3, final time T = 20, regularization parameter 𝛽 = 10−2, and the stochastic expansion decay
rate 𝛾 = 2.5.
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BENNER et al. 1673

F I G U R E 9 Total CPU time (left) and TT rank (right) vs regularization parameter 𝛽

F I G U R E 10 Total CPU time (left) and TT rank (right) vs stochastic expansion of 𝜅 decay rate 𝛾

F I G U R E 11 Total CPU time (left) and TT rank (right) vs viscosity 𝜈
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F I G U R E 12 Relative errors in the solution for different TT approximation thresholds (left) and numbers of stochastic variables (right)
[Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 13 Total CPU time (left) and TT rank (right) vs total approximation error [Colour figure can be viewed at
wileyonlinelibrary.com]

From the vorticity and the mass of the deterministic solution computed for different spatial mesh refinement levels
and numbers of time steps, we infer the following empirical convergence rates:

𝜖nref = 6.37 ⋅ 10−3 ⋅ 2−1.36⋅nref , 𝜖Nt = 0.5404 ⋅
1

Nt
.

Notice that the spatial discretization order is lower than 2, which can be attributed to the reentrant corner in the domain.
The errors of the TT approximation and stochastic parametrization are shown in Figure 12.
The fitted error expressions are shown in the corresponding plots. Now we can equilibrate all errors to the spa-

tial discretization error for nref = 1, 2, 3 and measure the computational complexity with respect to the total error (see
Figure 13).

We see that the slope is higher than in the obstacle example. This is due to the slower convergence of the spatial
discretization, whereas the TT rank still depends logarithmically on the accuracy. Higher order finite elements in space
might make the scheme more efficient. Nevertheless, even the simple discretization demonstrates that the low-rank
decompositions can perform uncertainty quantification with the same asymptotic cost as the solution of a deterministic
problem.
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F I G U R E 14 Mean velocity magnitude in the backstep domain, uncontrolled flow (top), controlled with 𝛽 = 102 (middle) and with
𝛽 = 10−2 (bottom) [Colour figure can be viewed at wileyonlinelibrary.com]

The mean velocities are shown in Figure 14. Again, we can see stabilization of the flow when a stronger control is
applied.

6 CONCLUSIONS AND OUTLOOK

We demonstrated the applicability of low-rank tensor decompositions to the solution of two benchmark optimal control
problems constrained by two-dimensional unsteady Navier-Stokes equations with stochastic inputs. This problem has a
3-fold challenge: a nonlinear time-dependent PDE, an optimization problem using a Lagrangian approach, and random
inputs. As particular model problems, we consider the minimization of vorticity of a von Kármán flow around an obstacle,
as well as a backward step domain problem. Each of the two models problems has an uncertain inflow condition.

We discretize our problem using the tensor product stochastic Galerkin FEM, in which case the numbers of degrees of
freedom coming from space, time, and all individual random variables multiply. The largest size of the problem to solve
for nref = 2, m = 8, and Nt = 2048 in the full representation would be Nx ⋅ 8m ⋅ Nt ≈ 1015, which exceeds our memory
capacity by several orders of magnitude.
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We avoid storing or computing such excessive amounts of data by approximating the solution in the TT decomposition.
A crucial part of the scheme is an alternating linear scheme solver, which computes the TT factors directly. This algorithm
required substantial modifications in order to be applicable to the SOCP: we preserve the saddle-point structure in the
reduced model and split the pressure and the velocity components in order to equilibrate the sizes of the tensors involved
in the alternating algorithm. The largest size of the reduced problem we actually needed to solve in Algorithm 1 for the TT
rank r = 60 was Nx ⋅ r ≈ 5 ⋅ 106. This is still rather large and requires preconditioning. Nevertheless, this is significantly
smaller than the complexity one could expect from sampling-based methods, let alone the full discrete problem. We
observed an empirical complexity rate of (𝜖−2) for the total error 𝜖, which indicates that the stochastic time-dependent
problem can be solved with the cost of a deterministic problem.

For future research, we plan to tackle more general nonlinear problems, as well as boundary and constrained controls.
We expect difficulties in applying the tensor decompositions considered in this article to discontinuous functions, such
as the indicator function of an active set. However, nonlinear problems involving smooth functions seem to be suitable
for the low-rank approach.60
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