

Optimized emulation of quantum magnetometry via superconducting qubits

Sensing

By Terra Quantum AG terraquantum.swiss

2023

Optimized emulation of quantum magnetometry via superconducting qubits

N. N. Gusarov, M. R. Perelshtein, P. J. Hakonen, and G. S. Paraoanu

ABSTRACT

Quantum magnetometry based on adaptive phase estimation allows for Heisenberg precision, while avoiding creation and maintenance of complex entangled states. However, the absolute sensitivity is limited by the non-optimal use of quantum resources provided by multiple-qubit devices and algorithmic realisations of the protocol. Here, addressing both issues, we advance the time-ascending phase estimation protocol by numerical improvements of Bayesian learning, {} sequential updating of the field distribution, and optimal exploitation of resources provided by unentangled qubits with limited coherence. Such algorithmic improvements are used to evaluate the absolute sensitivity both on a simulator and by pulsed-transmon experiments conducted on the IBMQ platform, where we take advantage of high coherence time. { In addition, we compare proficiency of separable and entangled states for magnetometry and show that, in practice, separable states provide superior performance. Flux-sensing emulation experiments demonstrate that a sensitivity of **0.17–1.74\muΦ0/\sqrt{Hz}** (where **Φ 0** is the flux quantum) for a single qubit and **0.06 – 0.65 \mu \Phi 0 / \sqrt{Hz} for a five-qubit magnetometer can be achieved for** slowly-oscillating 1 - 10 k H z magnetic fields, which is comparable with more established experimental platforms for magnetometry.

The full article can be found here: https://journals.aps.org/pra/accepted/b6076Nc9M931a02391e250f95a8210a67a36ff74e