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Abstract
Quantum phase estimation is a paradigmatic problem in quantum sensing and
metrology. Here we show that adaptive methods based on classical machine learning
algorithms can be used to enhance the precision of quantum phase estimation when
noisy non-entangled qubits are used as sensors. We employ the Differential Evolution
(DE) and Particle Swarm Optimization (PSO) algorithms to this task and we identify
the optimal feedback policies which minimize the Holevo variance. We benchmark
these schemes with respect to scenarios that include Gaussian and Random
Telegraph fluctuations as well as reduced Ramsey-fringe visibility due to
decoherence. We discuss their robustness against noise in connection with real
experimental setups such as Mach–Zehnder interferometry with optical photons and
Ramsey interferometry in trapped ions, superconducting qubits and
nitrogen-vacancy (NV) centers in diamond.

Keywords: Machine learning; Quantum phase estimation; Qubit

1 Introduction
Precision measurements play a fundamental role in physics, as they constitute a key ingre-
dient of many state-of-the-art applications and experiments testing the limits of scientific
theories. But the accuracy to which such measurements can be performed is itself gov-
erned by the laws of physics—and, ultimately, by those of quantum mechanics [1–4].

A generic measurement protocol for estimating the value of an unknown parameter con-
sists of preparing a probe in a desired initial state, allowing it to interact with the physical
system whose state depends on the parameter and, finally, obtaining a measurement re-
sult that encapsulates the information about it. This process, however, is often affected
by systematic and statistical errors. While the source of the former may stem from im-
perfect calibration of the measurement instruments, the origin of the latter can either be
accidental, due to insufficient control of the measurement chain, or fundamental, deriving
from the nature of the physical measurement [5, 6]. Fortunately, statistical errors, regard-
less of their origin, can be minimized by repeating the process and averaging the resulting
outcomes, as a consequence of the central limit theorem [7]. This theorem states that,
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given a large number N of independent measurement results, their average will converge
to a Gaussian distribution with standard deviation scaling as 1/

√
N . In metrology, this is

referred to as the Standard Quantum Limit (SQL). For many practical applications that
involve noisy and error-prone systems, it is essential to devise protocols that yield preci-
sion levels close to the SQL. However, it is known that this limit is not fundamental—the
ultimate limit set by the laws of quantum physics is the Heisenberg Limit (HL) [8–11].

Recently, several systems have achieved sufficient levels of technological maturity to
allow the experimental exploration of these limits. Due to the non-idealities present in
these systems, they are typically referred to as NISQ (noisy intermediate-scale quantum).
Largely, the motivation for this development has been rooted in quantum information pro-
cessing, where efficient and precise measurements and state manipulation is required [12],
and indeed significant progress towards the implementation of quantum gates and algo-
rithms has been made in optical setups [13, 14], NV centers in diamond [15, 16], trapped
ions [17, 18] and superconducting circuits [19, 20]. Since it employs similar control and
measurement techniques as quantum computing, the exploration of quantum-enhancing
techniques has grown as a separate field, usually referred to as quantum metrology [21, 22],
with applications such as ultrasensitive force detection [23], adaptive environment sens-
ing [24], near-surface electric field measurements [25], sensing of weak signals [26] and
even detection of gravitational waves [27].

The paradigmatic protocol in quantum metrology is quantum phase estimation. The
quantum phase is a parameter that cannot be directly measured and yet, it contains in-
formation about other quantities of interest, such as electric or magnetic fields. The tra-
ditional quantum metrology approach to phase estimation has been through the use of
highly entangled states such as NOON states [1, 3, 28], as well as other specially opti-
mized states [29–31]. However, highly entangled states tend to be very sensitive to noise:
for NOON states even the loss of a single qubit (photon) results in a separable state. Thus,
the implementation of this method is challenging with respect to real-life applications.
Fortunately, it has been later realized that precise quantum phase estimation does not
necessarily require entanglement. In optics, it was demonstrated that adaptive homodyne
phase measurements yield uncertainties close to the quantum uncertainty of coherent
states [32, 33]. It was also shown how to adaptively estimate the angle of a half waveplate
that characterizes the linear polarization of photons [34, 35] as well as how to perform
phase-shift estimation with polarization-encoded qubits [36]. Furthermore, the inverse
quantum Fourier transform, which is the last step in Shor’s factorization algorithm and
which typically requires gate entangling, can be carried out using local measurements
and feedback [37]. This approach has been used to break the SQL in experiments with
photons [38], superconducting qubits [39] and NV centers in diamond [40].

The incorporation of machine learning techniques in estimation protocols is a natural
step forward. Seminal theoretical work on employing reinforcement learning algorithms
has demonstrated the potential of these methods for reaching sensitivities below the SQL
when used in conjunction with entanglement [41–47]. Recently, some of these methods
have been tested experimentally in an optics setup with their estimation precision being
limited by the SQL [48]. This only upholds the potential of applying machine learning for
the optimization of parameter estimation under resources and noise level constraints, but
the foundations of these methods are still poorly understood. In mathematical statistics,
the limits of machine learning algorithms are an active area of investigation—for example
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deriving bounds on the number of samples needed to reach a certain accuracy [49]. How-
ever, the issue at stake is that typically all the mathematical results, including the SQL,
are derived from the so-called central limit N � 1 and for ideal noiseless systems. Yet the
relevant regime for the present status of quantum technologies in the NISQ era is that of
moderate N and significant noise. In this context no general unbiased estimator has been
found yet [28].

The objective of this work is to employ two machine learning algorithms, the DE and
the PSO algorithm, in the design of adaptive estimation schemes capable of driving the
measurement precision close to the SQL. We numerically show that the SQL is still a
valid bound even in the regime of not too large N . We also demonstrate that machine
learning algorithms can be used even in the presence of various experimental noises, con-
sequently providing robust policies with better performance than non-adaptive protocols.
For practical devices such as magnetometers based on single qubits, these methods can be
directly applied. More precisely, we observe that in order to increase the precision of these
devices, one straightforward option is to increase the sensitivity to the parameter to be es-
timated by, for example, using higher-energy states or by increasing the response using a
different biasing point. However, both of these strategies result in an increased coupling
to noise sources and, therefore, a compromise needs to be reached in order to achieve
the maximum performance. This will be further detailed in the paper when analyzing the
experimental realizations.

Both the DE and the PSO algorithm can also be employed as subroutines in order to en-
hance other quantum algorithms. For example, algorithms that use variable sensing times,
or multipass techniques, are in principle able to breaks the SQL and reach the HL. Instead
of averaging at every sensing time, which is the typical approach used one can further in-
crease the sensitivity by using our technique. Beyond quantum metrology, machine learn-
ing protocols could become useful in other quantum-information paradigmatic problems
that involve phase estimation, such as factorization, sampling, and computation of molec-
ular spectra [50]. In particular, our calculations are relevant for NISQ quantum technolo-
gies, where the number of qubits is limited and subject to errors and noise. Overall, by
benchmarking these two important protocols for the task of quantum phase estimation,
we hope that machine learning algorithms will be more prominently employed in appli-
cations such as optical interferometry and magnetometry, where the increase of precision
is essential and where the aim is set on reaching the HL.

The paper is organized in the following sections. Section 2 describes the general con-
cept of adaptive quantum phase estimation in Ramsey interferometry, discussing the up-
dating procedure as well as the relevant sources of noise. Section 3 presents the two
machine learning algorithms, the DE and PSO algorithm. Section 4 presents our main
results, where we show how the two algorithms allow us to approach the SQL. In this
section we also provide an analysis on the effects of Gaussian noise, Random Telegraph
noise (RTN) and quantum decoherence on the performance of the algorithms. Section 5
discusses the implementation of our protocol on several experimental platforms, namely
Mach–Zehnder optical interferometers, superconducting qubits, trapped ions and defects
in diamond. Finally, we conclude our results in Sect. 6.
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Figure 1 Adaptive quantum phase estimation
scheme. A qubitm is injected into the quantum
circuit either in the quantum state |0〉 or |1〉 and its
measured outcome ζm ∈ {0, 1} is used together with
some policy phase instruction xm ∈ [0, 2π [ to
prepare the circuit for the next round of
measurements. The quantum circuit consists of two
Hadamard gates H, a phase shift gate Uφ ,θ , a
detector D, and a processing unit with phase update
instructions for the controllable phase shifter

2 Adaptive quantum phase estimation scheme
To perform the estimation of an unknown phase φ, we use a generic adaptive scheme that
is able to adjust the value of a control phase θ to match the value of φ, based on the results
of previous measurements in a Ramsey interferometric sequence.

The schematic representation of the adaptive quantum phase estimation scheme dis-
played in Fig. 1 consists of a quantum circuit made of a Hadamard gate H, a phase shift
gate Uφ,θ , another Hadamard gate H and a detector augmented with a processing unit to
calculate the value of θ for the next round of measurements. Using standard notations in
quantum information, the Hadamard and phase shift gates can be respectively defined as

H =
1√
2

[
1 1
1 –1

]
and Uφ,θ =

[
1 0
0 ei(φ–θ )

]
. (1)

Under this adaptive quantum estimation scheme, an ensemble of N qubits is injected
sequentially into the circuit in randomly chosen quantum states, either in state |0〉 or state
|1〉, and their outcome is measured to prepare the value of the controllable phase shifter
for the next incoming qubit. The input state of the quantum circuit takes the form |0〉1 ⊗
|1〉2 ⊗ |1〉3 ⊗ · · · ⊗ |0〉N , which is manifestly separable. After the last N th qubit is injected
and its outcome measured, the final phase value of θ is considered to be the estimated
value of φ. The initial states of the qubits can be represented in Dirac notation as

|0〉 =

[
1
0

]
and |1〉 =

[
0
1

]
.

The idea is to have at the end of the process an estimated controllable phase value θ as
close as possible to the value of the unknown phase φ. The state of each qubit after the
second Hadamard gate is

|ψ±〉 =
1
2
[
1 ± ei(φ–θ )]|0〉 +

1
2
[
1 ∓ ei(φ–θ )]|1〉,

where the upper sign corresponds to a qubit whose initial state was |0〉 and the lower
sign to one whose initial state was |1〉. This yields measurement results ζ ∈ {0, 1} with
probabilities

P+(ζ = 0|φ, θ ) = P–(ζ = 1|φ, θ ) = cos2 φ – θ

2
, (2)
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and

P+(ζ = 1|φ, θ ) = P–(ζ = 0|φ, θ ) = sin2 φ – θ

2
. (3)

If the phase difference φ – θ is zero, then θ approximates very well the unknown phase
φ and a qubit prepared in state |0〉 will also exit in state |0〉. Similarly, the same logic can
be applied for a qubit injected in the quantum state |1〉.

In order to estimate the phase φ at every step m of the algorithm the controllable phase
θm has to be updated based on the previous result ζm–1 of the measurement. Here we adopt
a standard updating rule

θm = θm–1 + (–1)ζm xm, (4)

which has already been employed successfully in similar setups [44–46], and where the
initial value of θ can be fixed to θ0 = 0 without any loss of generality.

Note that the term xm in Eq. (4) represents the update policy which will be determined
by the machine learning algorithms. This update rule can be viewed as a decision tree
where for each qubit m, the controllable phase shifter must update its value θm either by
adding or by subtracting xm depending on the measured outcome state of the previous
qubit ζm ∈ {0, 1}. Consequently, for N qubits the number of possible θm values increases
exponentially as 2(N+1) – 1. This is a Markovian feedback, since the new controllable phase
θm depends only on the latest measured outcome state ζm.

To evaluate the performance of a policy, we use the Holevo variance [29–31], defined as

VH = S–2 – 1 =
∣∣〈ei(φ–θ )〉∣∣–2 – 1, (5)

where 〈ei(φ–θ )〉 represents the average value of ei(φ–θ ) for different phase values φ and their
respective estimates θ considered in the learning process of the machine learning algo-
rithms. Here we make the notation abbreviation θ = θN , since the Holevo variance of a
policy can only be calculated after the last qubit N is injected into the circuit and its out-
come measured. The quantity S = 〈ei(φ–θ )〉 ∈ [0, 1] is called the sharpness of the phase dis-
tribution, where the value S = 1 corresponds to a perfect estimation of φ. For periodically
bounded variables such as the phase, the Holevo variance is a direct measure of the stan-
dard deviation by (�φ)2 = VH. Therefore we have VH ∼ 1/N for the SQL. It is also impor-
tant for the model of the designed adaptive quantum phase estimation scheme to include
the possibility of errors and imperfections that occur in a real experimental situation. This
provides an important test to the robustness of the algorithms to relatively general sources
of noise which can be encountered on most experimental platforms.

The first source of noises to be considered are the noises in the application of the con-
trolled unitary phase shift transformation Uφ–θ , namely the Gaussian and the Random
Telegraph noise. Note that the Random Telegraph noise is particularly relevant for exper-
iments involving solid-state qubits.

In the scenario of Gaussian noise, the noise follows a normal distribution parametrized
by the standard deviation σ . Letting θ (GSN) represent the actual value of the controllable
phase shifter subjected to the noise, the Gaussian noise distribution can be defined as:

p
(
θGSN

m
)

=
1√

2πσ
exp

[
–

1
2σ 2

(
θGSN

m – θm
)2

]
. (6)
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In the scenario of Random Telegraph noise, the noise follows a discrete distribution
where at each time step the controllable phase shifter value can be randomly offset by a
fixed valued λ with a probability η. Letting θ (RTN) represent the value of the controllable
phase shifter subject to this source of noise, the Random Telegraph noise distribution can
be described as:

p
(
θRTN

m
)

=

⎧⎨
⎩1 – η, θRTN

m = θm,

η, θRTN
m = θm + λ.

(7)

The other important type of noise to be considered affects the qubit itself. This modifies
the unitary evolution generated by a Hermitian Hamiltonian H to a non-unitary evolution
given by the Lindblad master equation

ρ̇ = –
i
�

[H,ρ] + �1D[σ–](ρ) +
�ϕ

2
D[σz](ρ), (8)

where �1 is the relaxation rate, �ϕ is the pure dephasing rate and the dissipation superop-
erator D acting on the density matrix ρ is defined by D[A](ρ) = AρA† – 1

2 {A†A,ρ}. It is also
useful to introduce the standard notations T1 and T2 for the relaxation and decoherence
time, T1 = 1/�1 and T2 = 1/(�1/2 + �ϕ).

To implement the phase gate Uφ–θm from Eq. (1) the Hamiltonian must be of σz type, with
a component for the unknown phase φ and another one for the control θm. Typically, for
Ramsey experiments with a phase accumulation time τ , we have Hm = �

2 (φ/τ – θm/τ )σz

at the step m, with Uφ–θm = exp[–iHmτ /�], up to a global phase factor. The solution of
Eq. (8) is a 2 × 2 matrix with elements ρ00(τ ) = 1 – exp(–τ /T1)ρ11(0), ρ01(τ ) = exp(–iφ +
iθm – τ /T2)ρ01(0), ρ10(τ ) = exp(iφ – iθm – τ /T2)ρ10(0) and ρ11(τ ) = exp(–τ /T1)ρ11(0). If
the state at τ = 0 is prepared by the action of the Hadamard gate from either |0〉 or |1〉,
corresponding respectively to the + and – signs below, and at the final time τ we apply
again a Hadamard gate, we obtain that at every step m of the algorithm the probabilities
are modified as

P±(ζm|φ, θm) =
1
2
[
1 ± (–1)ζmν cos(φ – θm)

]
, (9)

where ν = exp(–τ /T2) is called interference visibility. One can check that for maximum
visibility, ν = 1, we recover Eqs. (2) and (3). Further considerations can be found in Ap-
pendix A.1.

3 Machine learning algorithms
The problem of quantum phase estimation relies on a sequential and cumulative set of
measurements to drive the estimation process, thus making it an ideal problem for rein-
forcement learning algorithms. In this work, we considered the Differential Evolution (DE)
[51, 52] and the Particle Swarm Optimization (PSO) [53–55], among other reinforcement
learning algorithms, as they are the most commonly employed for similar tasks in litera-
ture [41–47].

These algorithms employ a direct search method to the exploration of the search space
generated by all the possible policy configurations. Direct search methods use a greedy cri-
terion to drive their exploration. Such methods guarantee fairly fast convergence times,
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even though such fast convergence times often come at the expense of becoming trapped
in a local minimum. This comes as result of the greedy criterion promoting decisions that
lead to shorter and more immediate term rewards usually in detriment of fully explor-
ing the total search space. To avoid this scenario, it is important to perform a thorough
study on the controllable parameters of each of the mentioned algorithms before applying
them to the quantum phase estimation task. To evaluate the performance of an algorithm
there are two fundamental criteria: its ability to converge within the imposed number of
iterations to a solution and its ability to converge to a valid solution.

3.1 Differential evolution
The implementation of the DE algorithm to the current problem starts with a set of P
populations, each representing a candidate solution for the adaptive scheme update policy.
Each of these populations is a vector of size N , with each entry representing a new phase
instruction to prepare the controllable phase shifter for each of the qubits being injected
into the system. The DE algorithm at each iteration will employ its direct search method
to P N-dimensional vectors xG

i,j, where i ∈ {1, 2, . . . , P} and j ∈ {1, 2, . . . , N} represent each
entry of the candidate solutions vectors and G represents the generation of the population
vectors.

Each of these vectors is initialized with random values for each entry in the interval x0
i,j ∈

[0, 2π ]. Afterwards, at each iteration, the DE algorithm generates possible new candidate
solution vectors for the next generation by adding the weighted difference between four
population vectors to a fifth vector. This process is referred to as mutation:

ũG+1
i,j = xG

r1,j + F · (xG
r2,j + xG

r3,j – xG
r4,j – xG

r5,j
)
.

Here F represents a constant value in the interval [0, 1] which controls the amplification
of the difference between the considered populations. Hence, F will be referred to as the
amplification parameter. Note as well that all indexes {r1, . . . , r5} are randomly chosen in-
teger values always different between themselves. At this point, the entries of the newly
mutated vectors ũG+1

i,j are randomly mixed with the originally corresponding vectors to
increase their diversity. This process is referred to as crossover:

x̃G+1
i,j =

⎧⎨
⎩xG

i,j, if R1 > C and j 
= R2,

ũG+1
i,j , if R1 ≤ C or j = R2.

This process is controlled by the crossover parameter C which can take any value in the
interval [0, 1]. Hence, a crossover only occurs if the random value R1, which is generated
for each population member at each iteration, is below or equal to the chosen crossover
parameter. The value of R2 is an integer randomly chosen for each population at each
iteration of the evaluation process to ensure that at least one entry from the newly mutated
vectors ũG+1

i,j is passed to the trial vector for the next generation x̃G+1
i,j .

Finally, the new trial vectors are compared against the population vectors of the previous
generation to see which perform best against the cost function of the problem and, as a
result, become a member of the next generation of populations. This process is referred
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Figure 2 Overview of the three main stages of the DE algorithm. (a) Mutation: each entry of the candidate
solution vector is mutated, generating a new mutated candidate solution vector; (b) Crossover: a new
candidate solution vector is created with entries from the original and the newly created mutated vector;
(c) Selection: the new and the original candidate solution vector are tested against the cost function and the
one with the best results is propagated for the next generation

to as selection:

xG+1
i,j =

⎧⎨
⎩xG

i,j, if f (xG
i,j) < f (x̃G+1

i,j ),

x̃G+1
i,j , if f (xG

i,j) ≥ f (x̃G+1
i,j ).

Here f (·) represents the cost function associated to the quantum phase estimation which
is defined by the Holevo variance in Eq. (5). Therefore, if the new trial vectors x̃G+1

i,j mini-
mize this cost function when compared to the previous generation vectors xG

i,j, then they
become part of the next generation of populations. Otherwise, the previous generation
populations survive for the next generation. This entire process illustrates the adapted DE
algorithm implemented in this work and is schematically represented in Fig. 2.

3.2 Particle swarm optimization
The implementation of the PSO algorithm starts with a set of P particles, each represent-
ing an individual candidate solution to the update policy of the adaptive scheme. Each
particle can move in the N-dimensional search space associated with the N different
phase instructions of the controllable phase shifter for each of the input qubits. There-
fore, each particle will be represented by a position vector xG

i,j and velocity vector vG
i,j, where

i ∈ {1, 2, . . . , P} and j ∈ {1, 2, . . . , N} represent each entry and G the generation of the vec-
tors. Note that the position vector xG

i,j corresponds to a candidate solution vector, while
the velocity vector vG

i,j represents the change in direction of the corresponding position
vector in the search space.

All entries of these vectors are initialized with random values in the interval [0, 2π ]. At
each iteration, each particle evaluates its current position according to the cost function of
the search problem, defined by the Holevo variance in Eq. (5), and compares its value with
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Figure 3 Visual representation of the PSO algorithm. Initially, all the particles representing the different
candidate solution vectors are initialized at random positions with random velocities. At each iteration the
particles explore the search space of the problem, eventually converging around the collectively found global
optimum. The particles are able to share knowledge regarding the best-found position with other particles,
which is generically represented by the red fuzzy lines. In our implementation the topology of inter-particle
communication is such that all particles are able to share information with every other particle

the positions previously visited by itself and with the positions previously visited by the
entire collective of particles. If the current position is better than its own previously visited
positions, the particle stores it in a variable pbesti, where i ∈ [1, . . . , P] is the identifier of
that particle. If, in addition, the current position is better than all of the other previously
visited positions by the entire collective ensemble, the same position is stored in a variable
gbest shared among all other particles. This process is illustrated in Fig. 3.

Both of these variables will determine the entire exploration of the search space by the
P particle candidate solutions. After each iteration, each particle will use this collective
knowledge to adjust its displacement for the next turn according to

xG+1
i,j = xG

i,j + w · vG+1
i,j

and

vG+1
i,j = vG

i,j + α · Ra · (pbesti,j – xi,j) + β · Rb · (gbestj – xi,j).

Here the parameter α controls the desirability of each particle to move towards its best
found position, while the parameter β controls the desirability of each particle to move
towards the best found solution by the entire collective. Both Ra and Rb are uniformly
distributed random values in the interval [0, 1]. In addition, the parameter w works as a
damping weight controlling the change of direction imposed by the new velocity vector at
the current position of each particle.

To steer the direction of each particle to a converging candidate policy solution and
to avoid overstepping the found minima, an additional parameter vmax is imposed to the
algorithm which determines the maximum value that each entry in the velocity vector
may take. As the algorithm advances in its search for the optimal policy solution, this
parameter will decay with the number of iterations, consequently reducing the step size of
each particle and forcing them to converge to a solution. This final adjustment completes
the description of the adapted PSO algorithm implemented in this work.
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3.3 Parameters analysis
It is important to understand the behaviour and performance of these two algorithms un-
der the different possible configurations of their controllable parameters. To verify the
convergence of the solutions, it is important to remember that at each iteration of both
algorithms there are P different candidate solutions, each one represented by a given pop-
ulation of N phase value policies. As the algorithm iterates, the candidate solutions should
move closer to each other until converging to a final solution. Thus, one way of inferring
this convergence value is by calculating the deviation from the average value of each pop-
ulation for each entry of their candidate solution and then averaging these values. To do
so, the convergence value L is defined as

L =
N∑
j

1
N

( P∑
i

x̄j – xi,j

P

)
, (10)

where x̄j corresponds to the average value of entry j over all the candidate solutions and
xi,j corresponds to the entry j of the candidate solution vector i. Therefore, lower values
of L occur when all the candidate solutions are relatively close to each other and the algo-
rithm has converged to a solution. On the other hand, larger values of L indicate that the
algorithm was not able to converge to a solution at the given iteration.

The algorithms should also converge to a valid solution. It is not enough that the algo-
rithms converge to a solution, if it is not the correct one. Letting K represent the total
number of different phase values of φ considered in the learning task imposed to the ma-
chine learning algorithms, the performance of a policy can be evaluated by the Holevo
variance in Eq. (5). This equation, however, is computationally expensive in its current
form. So instead, we can approximate it numerically [29, 42, 46] to reduce computational
time. A more efficient evaluation of the Holevo variance can be described as

VH = S–2 – 1 =

∣∣∣∣∣ 1
K

K∑
k=1

ei[φ(k)–θ
(k)
N ]

∣∣∣∣∣
–2

– 1, (11)

where values for φ(k) – θ
(k)
N close to zero signify lower values of imprecision (sharpness

S ≈ 1) and therefore better performance.
Additionally, the performance VH of each candidate policy vector is evaluated M = 5

separate times and the results averaged in order to smoothen small fluctuations. Repeat-
ing the simulation multiple times allows for a more accurate representation of the perfor-
mance of each policy and thus more consistent results. The number of training instances
K can be any arbitrarily large enough number given that it does not hinder the computa-
tional time. A large number of training instances K also ensures a faithful representation
of φ in the interval [0, 2π [, since they are sampled uniformly and randomly from that same
interval. A reasonable choice that satisfies these criteria is K = 10N2, a number sufficiently
large to guarantee the convergence of the algorithms [46]. Overall, the time complexity of
the algorithms scales with O(P · G · N · K · M) ∼O(N3) which is polynomial in time.

At this point it is possible to completely evaluate the performance of each algorithm
according to the different possible configurations of each of their controllable parameters
and choose those that achieve better results. While Eq. (10) provides a measurement for
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Table 1 Optimal parameters for the DE and PSO algorithms obtained through the analysis described
in Appendices A.2 and A.3

Algorithm F C β α w vmax

Differential Evolution 0.7 0.8 – – – –
Particle Swarm Optimization – – 0.8 0.8 0.8 0.2

the convergence of the algorithms, Eq. (11) shows the precision to which they are able to
estimate the value of the unknown phase φ.

A thorough study on the performance of both algorithms under the different possible
controllable parameter configurations can be found in Appendix A.2 and Appendix A.3.
The optimal parameter configuration obtained for each algorithm is summarized in Ta-
ble 1.

Along with a fixed configuration for each algorithm, it is also important to ensure that
all the other variable parameters remain the same in order to draw comparable results.
Thus, it is important that for the same number of input qubits N being injected into the
system, the population number of candidate solution vectors P and the number of training
instances K remain the same under all different scenarios. As previously mentioned, the
number of training instances was set to K = 10N2, while the number of populations was
defined as P = 20 + 2 · int(N/10) – 1, where int(·) represents the integer part of the division.
Note that for an increasing number of qubits being injected into the system, the population
size of candidate solution vectors P and the number of training instances K must also
increase to accommodate the increasing complexity of the problem search space.

Ideally, both algorithms would be allowed to run until all the different candidate solution
vectors would have converged to a successful policy vector. However, due to time con-
straints the number of iterations for which both algorithms were allowed to run for each
number N of input qubits was set to G = 100, regardless of having reached convergence
or not. Thus, both algorithms would stop either when they had converged to a solution,
or when they reached iteration G = 100, and the final policy vector would be the average
of all the different candidate solution vectors at that point.

4 Results
In order to provide a benchmark for the two machine learning algorithms discussed above,
we first introduce a non-adaptive protocol that can also be run in the presence of noise.
This protocol has the advantage of simplicity and we find that for moderate noise values
it yields results that are better or comparable with machine learning algorithms. On the
other hand, for increased noise values the machine learning protocols show better results.

We start by discussing the ideal configuration where any source of noise or quantum
decoherence is neglected, then we consider the Gaussian and Random Telegraph noise
configurations and, finally, the visibility loss due to decoherence. These different sources of
imperfection were applied to the quantum phase estimation configuration independently.
The number of varying qubits used under all the different scenarios was set in the interval
N ∈ [5, 25] and all the remaining parameters were left the same across all the different
scenarios. For N > 20 we found that the algorithms were already taking more than five
days to arrive at a successful policy vector, which ultimately made any larger value of N
computationally impracticable under a reasonable amount of time.

The break in performance in non-ideal systems is clearer for larger values of noise, since
increasing the value of noise in the estimation process consequently leads to an increased
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complexity of the search space for both algorithms. Thus, for larger values of N this added
level of complexity becomes even more evident in the scattering of the obtained results.
However, it is important to stress that when both algorithms had enough time to converge
to a successful policy, they were able to perform with precision values close to the SQL,
thus attesting their resilience to noise in the quantum phase estimation scheme.

4.1 A non-adaptive protocol and the standard quantum limit benchmark
The SQL is defined strictly speaking in the limit of large N . Since we do not work in this
asymptotic regime, it is important to devise a non-adaptive protocol that reproduces the
SQL for N � 1, yet it yields results also at N ≈ 5 – 25.

This protocol can be outlined as follows. We consider the random phase that should
be estimated φ and a fixed control phase θ . Based on these values, we calculate the prob-
ability P±(0|φ, θ ), see Eqs. (2), (3) or Eq. (9) with ν = 1. Then, for each N we generate
N uniformly random numbers in the interval [0, 1]. If the random number is less than
P±(0|φ, θ ) we add it into the 0 bin, otherwise we add it to 1. Next, we count the num-
ber of elements in the 0 stack, N±(0). Finally, we find an estimation for the phase φest, as
φest = θ +arccos(±2N±(0)/N ∓1), and we calculate the Holevo variance with the exponent
in Eq. (11) as exp[i(φ – φest)].

The number of elements N+(0) and N+(1) = N – N+(0) follows the binomial distribution
as shown in Fig. 4. This distribution is obtained from two constant phase estimation by 50
measurements, repeated 250,000 times.

This procedure is repeated K = 10N2 times for each phase φ uniformly distributed in the
interval [0, 2π ]. The resulting Holevo variance is represented by the blue squares in Fig. 5.
We have verified numerically that the non-adaptive method reproduces asymptotically
the SQL. For example, even at N = 100 the difference between simulated VH and 1/N is
10 % and reaches 4 % at N = 800. Also, as it is seen from the inset at Fig. 5, the slope for

Figure 4 Distribution of N+(0) outcomes for 25,000 experiments of fixed phase estimation for two values of
P+
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Figure 5 Estimation precision based on the logarithm of the Holevo variance ln(VH) of both the DE and PSO
algorithms under the ideal configuration for N ∈ [5, 25] qubits

Figure 6 Probability density function of the DE and PSO algorithms as a function of the phase value θ

this non-adaptive protocol is equal to –1.0265, while for the ideal SQL this slope should
be –1.

The same procedure is used to simulate the variance in the presence of different noises,
as it is shown below.

4.2 Adaptive protocols in the ideal noiseless configuration
Before analysing the evolution of the performance obtained by the DE and PSO algorithms
under a increasing number of qubits N , it is important to show that this increase in N does
indeed lead to better estimation values. To do so, the two algorithms were first allowed to
converge to a given value of the unknown phase φ for different values of N . This exper-
iment was repeated 1000 times for each value of N and, at each time, the value of the
estimated phase θ was recorded. Finally, these 1000 different results of θ for each value
of N were fitted to a probability density function (PDF) and centered all around the same
value θ = π to better compare the results. The results for each algorithm are displayed side
by side in Fig. 6.
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Considering the results obtained in Fig. 6 it is indeed possible to see that by increasing
the number of qubits N at the input level the estimation process leads to values of θ con-
verging further towards the given value of the unknown phase φ. It is also possible to see
that as N goes higher, this increase in precision starts to be less evident as the algorithms
start running into convergence issues. Given that the complexity of the search space of
each algorithm scales polynomial in N and that due to time constraints the algorithms
were not allowed to run for more than G = 100, a decrease in performance under this
time limitation for large values of N is expected.

Having arrived at this conclusion, the final results obtained under the ideal scenario,
where there is no source of noise or quantum decoherence, are shown in Fig. 5. Observ-
ing the results it is possible to see that both algorithms were able to follow the SQL for
the ideal-case scenario. It is also possible to reinforce the previous found conclusion that
an increase in N leads to better results. In fact, for N ∈ [5, 15] the scaling of the Holevo
variance is well approximated by a power law VH ∼ N–α , where αDE = 0.75 for the DE algo-
rithm and αPSO = 0.64 for the PSO algorithm, while the corresponding value for the SQL
is αSQL = 1. This also shows that the DE performs slightly better than PSO at reaching low
variances, which is consistent with results obtained in other contexts, such as estimating
the bias in the quantum walk algorithm [43]. This scaling in precision close to the SQL
for N ∈ [5, 15] is consistent with what has been numerically observed in other algorithms
[31].

The fact that the machine learning algorithms do not reach the SQL is also consistent
with the known results that the adaptive measurements cannot saturate the Cramér-Rao
inequality even for optimal measurements [56, 57]. It is also noticeable that for larger val-
ues of N the performance starts to break due to the limiting number of iterations G = 100
imposed for the convergence of the algorithms. This is not a malfunction of the algorithms,
but a direct consequence of the restricted time available. As the complexity of the search
space of the algorithms increases, so does the number of generations required to converge
to a successful policy.

4.3 Configurations with noise
Considering the results obtained under the ideal configuration, it is important to study
the resilience of the algorithms to different sorts of imperfections that can be found in an
experimental quantum phase estimation scheme. First, the performance of the algorithms
was evaluated in the presence of Gaussian noise, followed by Random Telegraph noise and
finally in the presence of quantum decoherence.

4.3.1 Gaussian noise
In this scenario the algorithms were tested for increasing amounts of Gaussian noise σ =
{0.2, 0.4, 0.8} when dealing with the controllable phase shifter θ according to Eq. (6). The
results obtained under these conditions are presented in Fig. 7.

It is possible to see that as the noise fluctuations increase the precision of both adap-
tive and non-adaptive algorithms starts to diminish. This is, nevertheless, expected for
any estimation process being conducted under increasing values of noise. The break in
performance is also perceptible for larger values of N . However, we see from Fig. 7 that
the adaptive algorithms are more sensitive to increasing values of Gaussian noise and that
for σ = 0.8 the policies obtained from machine learning become clearly superior to the
non-adaptive protocol.
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Figure 7 Estimation precision based on the logarithm of the Holevo variance ln(VH) of both the DE and PSO
algorithms under increasing values of Gaussian noise σ for N ∈ [5, 25] qubits

Figure 8 Estimation precision based on the logarithm of the Holevo variance ln(VH) of both the DE and PSO
algorithms under increasing values of Random Telegraph noise λ with a fixed probability of η = 0.4 for
N ∈ [5, 25] qubits

4.3.2 Random telegraph noise
Considering now the scenario where the estimation scheme was subject to a Random
Telegraph noise following Eq. (7), the algorithms were tested against increasing values of
λ = {0.2, 0.4, 0.8} while keeping the probability of switching to the erroneous phase value
fixed at η = 0.4. The results obtained by the algorithms under these configurations are
displayed in Fig. 8.

Similarly to the results obtained under the Gaussian noise, the results obtained in Fig. 8
show that both adaptive and non-adaptive algorithms partly follow the SQL curve even
in the presence of Random Telegraph noise. The poorer performance for larger values of
noise, as well as the break in performance for larger values of N , is also evident under
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this scenario for the same reason as before. We can also see that for larger values of λ the
machine learning adaptive algorithms are more robust than the non-adaptive algorithm.

4.3.3 Quantum decoherence
In this last scenario, we study the impact of quantum decoherence in the performance
of both algorithms. This is a key source of noise in all non-optical qubits (e.g. trapped
ions, superconducting qubits, NV centers). The algorithms were tested against decreasing
values of visibility ν = {0.9, 0.8, 0.6} according to Eq. (9). Note that unlike the ideal scenario,
the reduced visibility also impacts the SQL, see Eq. (18) in Appendix A.1. Also note that the
value ν = e–0.5 ≈ 0.6 appears in certain tasks of non-adaptive parameter estimation as the
visibility corresponding to an optimal phase accumulation time τ of half the decoherence
time [21]. The results obtained under this configuration are shown in Fig. 9.

Considering the results obtained in Fig. 9, it is evident that reduced values of visibility
have a significant impact on the performance of the algorithms. This is an expected be-
haviour, since it is known that quantum enhancement for systems operated at around the
decoherence rate is asymptotically limited to only a constant factor improvement over the
SQL [58]. This can be confirmed by an analysis of the Fisher information:

Fφ,θm =
[
∂φ lnP±(ζm|φ, θm)

]2 =
∑

ζm=0,1

[∂φP±(ζm|φ, θm)]2

P±(ζm|φ, θm)
=

ν2 sin2(φ – θm)
1 – ν2 cos2(φ – θm)

. (12)

The Fisher information quantifies the knowledge gained at each measurements. It can
also be extended from projective to positive operator-valued measurements, see [59], and
it is used to define the SQL (see Appendix A.1). Indeed, from Eq. (12) it can be observed
that ν reduces the information extracted after each measurement from its maximum value
Fφ,θm = 1 at ν = 1.

Similarly here we observe that relatively large values of decoherence (visibility around
0.6) result in the suppression of precision obtained by the non-adaptive protocol, while
the adaptive DE and PSO are less sensitive.

Figure 9 Estimation precision based on the logarithm of the Holevo variance ln(VH) of both the DE and PSO
algorithms under decreasing values of visibility ν = {0.9, 0.8, 0.6} for N ∈ [5, 25] qubits



Costa et al. EPJ Quantum Technology            (2021) 8:16 Page 17 of 30

5 Experimental implementations
Summing up the theoretical results obtained so far, we can see that even for noisy systems
it is possible to reduce the Holevo variance to values in a band of typically [–1.2, –1.7]
(standard deviations between 0.5 and 0.4) with a moderate numbers of N ∈ [10, 25] qubits.
This protocol can be implemented on several experimental platforms, using either opti-
cal or microwave frequencies. We describe here the main experimental platforms and we
show how the problem of optimizing the precision in the presence of noise can be ad-
dressed using the machine learning framework.

The most straightforward implementation is optical Mach–Zehnder interferometry. In
this case, the operator Uθ–φ can be realized by placing a phase shifter φ in one branch of
the interferometer and a variable-phase shifter θ in the other branch. The latter can be
realized physically as a half-wave plate placed on a rotation stage controlled by a com-
puter [60]. The states |0〉 and |1〉 correspond to a single photon in one branch or the other
of the interferometer (dual-rail encoding). Our results can be compared also with those
obtained from running the more powerful Kitaev algorithm, which for the same number
of resources (from 10 to 25) results in standard deviations ranging from 0.35 to 0.16 [60],
only marginally better than the data reported here. Also, our results are consistent with the
theoretical limits reported in [61] for the case of non-entangled initial states (VH = 0.5609,
lnVH = –0.25). We obtain approximately a factor of 2 improvement in the standard devia-
tion. For implementations employing optical interferometry, the visibility is typically very
close to 1, and the main noise sources in the feedback loop concern changes in the re-
fractive index of the beam-splitters and variable phase shifter, as well as variations in the
optical paths typically caused by temperature.

More recently, an experiment with optical photons has tested the PSO algorithm
with sequential non-entangled photons [48]. The single photons were obtained non-
deterministically, by generating entangled pairs through spontaneus parametric down-
conversion in a 2 mm long beta-barium borate (BBO) crystal and heralding over detection
events in another detector. The unknown and the control phases in the two arms of the
Mach–Zehnder interferometer were realized with liquid crystal devices, where the rel-
ative phase between the horizontal and vertical polarization can be changed depending
on the applied electric field. The results with the PSO algorithm obtained agree with our
analysis: PSO is quite efficient at reaching values approaching the SQL, especially when
the number of resources (number of photons N ) is limited. Similarly to our findings, for
N exceeding approximately 15 photons the Holevo variance tends to saturate. The robust-
ness with respect to Gaussian phase noise and dephasing noise was also demonstrated by
artificially adding errors to the feedback phase.

In the case of qubits based on discrete levels (solid-state and ions/atoms), Mach–
Zehnder interferometry corresponds to Ramsey interference [62, 63]. To understand how
the phase information is embedded in this system, consider the following generic qubit
Hamiltonian driven by a microwave field [64],

H =
�

2
ω01σz + �� cosωtσx. (13)

In a frame defined by the unitary exp(iωtσz) (a clockwise rotation around the z-axis), using
exp(iωtσz)σx exp(–iωtσz) = σx cosωt – σy sinωt and by further applying the rotating-wave
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approximation we get the effective Hamiltonian

H =
�

2
(ω01 – ω)σz +

��

2
σx. (14)

A non-zero Rabi frequency � 
= 0 can be thus used to create the two Hadamard gate, while
the time in-between is spend for the actual sensing. Indeed, if � = 0 for a sensing time τ ,
the resulting unitary becomes

Uφ,θ =

[
1 0
0 ei(ω01–ω)τ

]
, (15)

which is exactly Eq. (1) up to an overall irrelevant phase and the identification φ = ω01τ ,
θ = ωτ .

Consider now a concrete problem, that of evaluating the magnetic field using a super-
conducting qubit, a trapped ion, or a nitrogen-vacancy (NV) center in diamond. In these
cases, for typical experiments using Ramsey interferometry, the probability is given by
Eq. (9), where the dependence of the visibility ν on the sensing time τ can be sometimes
different from a simple exponential decay ν(τ ) = exp[–τ /T2], valid for the case of Gaus-
sian noise (see the Lindblad equation used in Sect. 2). For example, another dependence
is ν(τ ) = exp[–(τ /T2)2] if the noise experienced by the qubit is 1/f, see e.g. [40, 63, 64].
Since τ is bounded by T2, in these setups one might attempt to increase the precision by
increasing the sensitivity of ω01 to the magnetic field. However, this means increasing the
coupling to the magnetic field, which at the same time this will increase the exposure of
the qubit to noise. Thus, a tradeoff must be reached between these two competing effects.
Our results demonstrate that the increase in noise can be mitigated successfully by the use
of machine learning strategies.

In the case of a superconducting qubit in the symmetric transmon design as used in
recent magnetometry experiments [63, 65, 66], the information about magnetic field is
embedded in the energy level separation as

ω01(B) =
1
�

(√
8ECEJ� cos

∣∣∣∣π BS
�0

∣∣∣∣ – EC

)
, (16)

where B is the magnetic field piercing the SQUID area S of the transmon and modulating
the total Josephson energy EJ� . In order to evaluate B, we can keep τ fixed and adjust
the frequency ω (generated by an external signal generator) at every step. In the case of
superconducting qubits, with relatively standard values T2 = 10 μs and τ = 1 μs we obtain
ν = 0.9 (one of the values used in Sect. 4) if the noise is Gaussian and ν = 0.99 if it is 1/f
noise.

In order to increase the precision of determining the magnetic field, we can use a higher
excited state [65, 67]—for example, the second excited state |2〉, and considering the har-
monic approximation for the transmon, the relevant accumulated phase will be ≈ 2ω01τ ;
or we can bias the transmon to a magnetic field value where the slope dω01/dB is larger.
Both situations result in an increase in the noise. In the first case, this is due to the fact
that higher energy levels have higher couplings to the electromagnetic environment. This
causes an increase in T2, cause due to both an increase in the T1 time and an increase in
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the pure dephasing time. For example, if the second excited state is used, the decay rate of
the 1 – 2 transition is twice that of the 0 – 1 transition, which for T1-limited qubits results
in a significant reduction of the interferometric visibility. In the second situation, due to
biasing far from the sweet point. In the latter case, let us restrict ourselves for simplicity
to the interval BS ∈ [–�0/2,�0/2]. We then have

dω01

dB
= –

πSω01

�0
tan

(
π

BS
�0

)
.

This slope is infinite for BS = ±�0/2, apparently allowing us to measure B with an infinite
precision. However, the displacement of the bias point from the sweet point is accom-
panied by a significant increase in noise, since the qubit is no longer protected against
linear-oder fluctuations. This results again in a visibility ν below unity.

The noises in the control phase θm are typically not caused by electronics in the feedback
look, but they result from uncontrollable frequency shifts that are poorly understood and
controlled. Experimentally, these shifts are of the order of a few MHz. If τ is of the order
of microseconds, then the resulting values of λ and σ are well below those considered in
this work. Therefore, this type of noise will not affect the performance of our protocols
when run on a superconducting qubit.

In the case of trapped ions, sensitive magnetometry using the well-known 171Yb+ ion has
been demonstrated [68]. This uses four hyperfine states, |F = 0, mF = 0〉, |F = 1, mF = 1〉,
|F = 1, mF = –1〉, and |F = 1, mF = 0〉 belonging to the 2S1/2 manifold. The latter three states
are degenerate and they are separated by the hyperfine splitting ωhf /(2π ) = 12.642 GHz
from the first state. The degeneracy of these three states can be lifted by the application of a
magnetic field. In the first order in magnetic field, the state |F = 1, mF = 0〉 remains unmod-
ified but |F = 1, mF = ±1〉 acquires frequency shifts of ±(geμB/2�)B, where ge ≈ 2 is the g-
factor of the electron and μB is the Bohr magnetron. Thus, for magnetic field detection one
could in principle use the state |F = 0, mF = 0〉 and either of the magnetic-sensitive states
|F = 1, mF = ±1〉 and drive resonant Ramsey π/2 microwave pulses at around 12 GHz with
τ time separation. Then the information about magnetic field is obtained from the phase
φ = (ωhf ± geμBB/2�)τ . These states would be exposed not only to the magnetic field that
we would like to sense, but also to magnetic field noise, making our results for the noisy
case relevant. Further improvements may be achieved by the use of a continuous dynam-
ical decoupling technique, where one could identify the |F = 1, mF = 0〉 ≡ |0〉 and the dark
state 1√

2 (|F = 1, mF = –1〉 + |F = 1, mF = 1〉) ≡ |1〉 as a dressed-qubit states, with a T2 time
exceeding one second [69], three orders of magnitude more than the bare atomic states
which is a few miliseconds.

Similar ideas can be applied to NV centers in diamond. These defects have very long
decay times, of the order of tens of miliseconds, and total decoherence times are of the
order of microseconds and can be extended to hundreds of microseconds by the use of dy-
namical decoupling pulses [70]. Single NV centers have a triplet S = 1 ground-state struc-
ture, with the states mS = 0 and mS = ±1 separated by the so-called zero-field splitting
D = 2.87 GHz. By applying a magnetic field along the crystal axis, the levels mS = ±1 can
be further split by the Zeeman effect [71]; the resulting energy level difference between
these levels is 2geμBB/� = 2γeB where μB is the Bohr magnetron and ge is the electronic
g-factor, ge ≈ 2. The gyromagnetic ratio γe is defined as γe = geμB/�. Because the triplet
states can be selectively addressed with microwaves [71] we can immediately identify for
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example |0〉 = |mS = 0〉 and |1〉 = |mS = 1〉 as the basis corresponding to our formalism,
and we obtain ω01 = 2πD + γeB. The encoding of the magnetic field in frequency and sub-
sequently in the phase is linear, � = (2πD + γeB)τ .

To summarize, each of these experimental systems involved relatively well characterized
imperfections, and an evaluation of our protocols for any specific setup can be realized by
inspecting the general results obtained for various types of noise in Sect. 4. We find that
the precision can be optimized by using machine learning protocols to mitigate the noise
resulting from the increase in sensitivity. We also note that this tradeoff is expected to
occur also if machine learning algorithms are included as subroutines in protocols that
use highly entangled states to increase the precision, since highly entangled states are also
very susceptible to noise.

6 Conclusion
The objective of this work was to study the performance of machine learning algorithms,
namely the DE and PSO algorithm, in a quantum phase estimation scheme and determine
their ability to come close to the SQL without resorting to multi-particle entanglement. To
this end, both algorithms were tested against different configuration scenarios and were
able to follow the SQL curve up to a given value of input qubits N . Under the constraint of
G = 100 it was possible to notice that the algorithms start to loose performance for larger
values of N . This becomes even more relevant in the scenario with quantum decoherence.
However, it is important to reiterate that this is not a deficiency of the algorithms, but a
direct consequence of the time and computational resources available.

These limitations can be overcome in future works by optimizing the code and making it
more time efficient in order to allow both algorithms a larger number of iterations before
converging to a valid solution. An immediate improvement would be to fully vectorize the
code which would make it significantly faster. Another direct improvement would be to
parallelize the code so that it could leverage the power of stronger computers with higher
number of cores. This would allow for the different independent simulation threads of
both algorithms to be conducted in parallel, making the estimation process even more
time efficient. One can also explore recurrent neural networks for the quantum phase es-
timation task, as they are particularly well suited for regression-based prediction models
on time series events. It would be interesting to see how architectures such as the Long
Short-Term Memory (LSTM), the Gated-Recurrent Unit (GRU) and the Temporal Convo-
lutional Networks (TCN) would compare against our reinforcement learning algorithms.

Overall, we have shown that machine learning algorithms can provide noise-robust poli-
cies and we benchmarked their performances for various types of noise in close connec-
tion to experimental realizations. Above a certain critical value of noise, we found that
machine learning based protocols show better results than non-adaptive methods. This
opens a door to future developments that may push even further the precision of quantum
phase estimation with classical machine learning algorithms without resorting to prepa-
ration and measurement of highly entangled states.

Appendix
A.1 Theoretical background
Probabilities Here we present analytical results related to the calculation of the Holevo
variance. Given a qubit fed into the adaptive scheme with the adjustable phase set to θm
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and the unknown phase φ at step m, the probability of obtaining the result ζm is given by
Eq. (9)

P±(ζm|φ, θm) =
1
2

± ν

2
(–1)ζm cos(φ – θm), (17)

where the + and – signs correspond to the initial qubit in the state |0〉 respectively |1〉, and
ν is the visibility, ν ∈ [0, 1].

To simulate numerically P±(ζm|φ, θm) we draw a random number from the interval [0, 1].
If this number is smaller than P(ν)

± (0|φ, θm), then the result ζm of the measurement is
recorded as 0; if it is larger, it is recorded as 1. With these notations, we can understand
easily the origin of the SQL. Indeed, the information about phase is contained in the prob-
abilities Eq. (17). However, the evaluation of this probabilities is affected by measurement
projection noise.

Standard quantum limit Suppose now that we try a simple non-adaptive strategy where
we just repeat the Ramsey experiment for N times with an initial states |0〉 and the
same control phase θ , selecting the results with ζ = 1. The precision δφ that we can
achieve is given by δP+(1|φ, θ ) = (1/2)ν sin(θ – φ)δφ. To achieve a small δφ it is advan-
tageous to measure at phase parameters where the sine in this expression is maximal, that
is, at around P+(1|φ, θ ) = 1/2. At the same time, the measurement results have a bino-
mial distribution, with [�P+(1|φ, θ )]2 = (1/N)P(ν)

+ (1|φ, θ )[1 – P+(1|φ, θ )], which results in
�P+(1|φ, θ ) = 1/(2

√
N) around the region of maximal sensitivity P+(1|φ, θ ) = 1/2. In order

to obtain a signal-to-noise ratio of at least 1, the uncertainty noise should be at most the
same as the signal, δP+(1|φ, θ ) ≥ �P+(1|φ, θ ), which results in

δφ ≥ (�φ)SQL =
1

ν
√

N
. (18)

Thus, the precision is limited by the SQL. As expected, a small visibility ν 
= 1 results in an
increased (�φ)SQL, corresponding to a loss in precision.

We can make this argument more rigorous by using the Cramér-Rao bound,

δφ ≥ 1√
NFφ,θ

=
1√
N

√
1 – ν2 cos2(φ – θ )
ν| sin(φ – θ )| . (19)

The maximum value ofFφ,θ is obtained for φ–θ = π/2, 3π/2 and equals ν2. We then obtain
the relation Eq. (18). An alternative derivation consists of calculating the fluctuations of the
�z =

∑N
i=1 σz operator, namely (��z)2 = 〈�2

z 〉 – 〈�z〉2 = N(〈σ 2
z 〉 – 〈σz〉2), reflecting the fact

that the fluctuations of the σz ’s are uncorrelated. The average 〈σz〉 = P+(0|φ, θ ) – P+(1|φ, θ ),
and using the error propagation rule

�φ =
�σ N

z
|∂φ〈σ N

z 〉| , (20)

we get the same result as in Eq. (19).
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Adaptive measurements In an adaptive measurement, the control phase is adjusted de-
pending on the previous measurement values. Here, in order to simplify the notation, we
will not write anymore the ± subscript for probabilities. Then, the probability of a se-
quence �ζm ≡ {ζ1, ζ2, . . . , ζm} of results given the phase adjustments �θm ≡ {θ1, θ2, . . . , θm} is
obtained as

P(�ζm|φ, θ ) = P(ζm|φ, θm)P(ζm–1|φ, θm–1) · · ·P(ζ1|φ, θ1). (21)

From the Bayes’ theorem, we have at the m’th measurement

P(φ|�ζm, �θm) =
1

P(�ζm)
P(�ζm|φ, �θm)P(φ). (22)

The prior P(φ) is taken uniformly distributed P(φ) = 1/(2π ) and the marginalization
P(�ζm) =

∫ 2π

0 dφP(�ζm|φ, �θm)P(φ).
To further understand how the Holevo variance changes at every step of the algorithm,

we present a recursive calculation procedure based on the Fourier transform. We start by
examining the sharpness appearing in the Holevo variance for a given depth m,

S =
∣∣∣∣
∫ 2π

0
dφeiφP(φ|�ζm, �θm)

∣∣∣∣. (23)

From Eq. (22) and Eq. (17) we notice that the probability density is a harmonic function
of φ, 2φ, 3φ, . . . therefore we can use the Fourier transform

P
(
[k]|�ζm, �θm

)
=

1
2π

∫ 2π

0
dφe–ikφP(φ|�ζm, �θm), (24)

where for clarity we use [k] as the index of the k’th Fourier component and with inverse
given by

P(φ|�um, �θm) =
∞∑

k=–∞
eikφP

(
[k]|�um, �θm

)
. (25)

From Eq. (23) we get

S =
∣∣2πP

(
[k = –1]|�ζm, �θm

)∣∣; (26)

in other words the Holevo variance can be seen as the k = –1 Fourier coefficient of the
probability distribution. Moreover, the expectation value of φ is obtained from the average
of eiφ

〈φ〉 = arg
〈
eiφ 〉

= 2π argP
(
[k = –1]|�ζm, �θm

)
. (27)

The Fourier coefficients can be calculated recursively. To see this, we apply the Bayes
rule Eq. (22)

P(φ|�ζm, �θm) =
1

P(�ζm)
P(ζm|φ, �θm)P(�ζm–1|φ, �θm)P(φ)



Costa et al. EPJ Quantum Technology            (2021) 8:16 Page 23 of 30

= P(φ|�ζm–1, �θm–1)P(�ζm|φ, �θm)
P(�ζm–1)
P(�ζm)

,

where the last fraction is a normalization factor. Thus, if we consider non-normalized
probabilities p, we have the Bayes relation p(φ|�ζm, �θm) = p(φ|�ζm–1, �θm–1)p(�ζm|φ, �θm), from
which we find the Fourier recurrence relation

p
(
[k]|�ζm, �θm

)
=

1
2

p
(
[k]|�ζm–1, �θm–1

)
+

1
4

(–1)ζmν
[
e–iθm p

(
[k – 1]|�ζm–1, �θm–1

)
+ eiθm p

(
[k + 1]|�ζm–1, �θm–1

)]
. (28)

To recover the correct normalization we simply impose
∫ 2π

0 dφP(φ|�ζm, �θm) = 2πP([k =
0]|�ζm, �θm) = 1, therefore we identify the normalization factor as 2πp([k = 0]|�ζm), with
P([k]|�ζm, �θm) = p([k]|�ζm, �θm)/(2πp([k = 0]|�ζm, �θm)).

However, even with the use of these analytical results the evaluation of probabilities
would require significant computational resources especially at large N . The reason is
that, as it is clear from Eq. (23), the evaluation needs to be done for all 2N vectors ζN ,
requiring exponentially more resources as N increases.

A.2 Differential evolution
To study the convergence of the DE algorithm, two parameter control tests were done
varying the controllable parameters of interest, F and C, while keeping all the other values
constant. The tests were conducted for N = 10 qubits, P = 20 populations, G = 50 genera-
tions and K = 1000 training instances. All sources of noise were neglected during the test,
since they are not needed to study the overall performance of the different controllable
parameters configurations and would only slow down the learning process.

The first parameter control test concerned the ability of the algorithm to converge to
a solution, whether it was a valid one or not, with different possible parameter config-
urations. Referring to Eq. (10) to evaluate the convergence of the algorithm the results
obtained are displayed in Table 2.

Inspecting the results in Table 2 it is possible to find a pattern where only the configura-
tions where the amplification constant F is strictly smaller than the crossover constant C
lead to the convergence of the algorithm within the given number of generations. In other
words: F < C guarantees the convergence of the DE algorithm. This newfound rule can be

Table 2 Convergence values L(F,C) for the DE algorithm. Values in bold represent configurations
where convergence was achieved. Convergence was considered only for values of L≤ 0.1256, which
corresponds to a maximum dispersion of approximately 2% of the entire 2π search space for each
entry of the different candidate solution vector

F C

0 0.2 0.4 0.6 0.8 1

0 1.0166 0.0696 0.0261 0.0224 0.0019 0.0010
0.2 0.9334 0.3726 0.0326 0.0116 0.0204 0.0094
0.4 1.0897 0.7491 0.7231 0.0235 0.0202 0.0269
0.6 1.1647 0.8364 0.7764 0.5226 0.0251 0.0193
0.8 1.2183 1.1356 0.9333 1.0901 1.0133 0.0691
1 1.3101 1.2460 1.2433 1.3081 1.1359 1.2798
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Table 3 Performance results based on the logarithm of the Holevo variance ln(VH(F,C)) for the DE
algorithm. Values in bold represent the configurations which have achieved convergence in Table 2.
Lower variance values are obtained by solutions that lead to more precise estimations of the
unknown parameter that is being measured

F C

0 0.2 0.4 0.6 0.8 1

0 –0.3735 –1.2012 –0.7845 –0.7758 –0.7083 –0.4196
0.2 5.2111 –1.6266 –1.3737 –1.4401 –1.0244 –1.0948
0.4 –0.3897 –0.2398 0.6181 –1.5613 –1.2976 –1.5611
0.6 0.3131 –1.1896 –1.1589 –1.3696 –1.8321 –1.5453
0.8 0.6326 –1.0395 0.3694 –0.6645 0.8763 –1.6784
1 –0.1786 1.2460 2.5564 0.6131 4.2364 0.0864

understood from a physical interpretation of the process. Larger values for the crossover
parameter C encourage the different candidate solutions to experience more configura-
tions, thus covering a larger area of the entire search space. This increased exploration of
the search space, leads to a more exhaustive pursuit of the best policy solution. However,
by increasing the amplification constant F , the step of this search process is also increased.
This may lead the algorithm to overlook possibly desirable candidate solutions, which ul-
timately may not allow the algorithm to converge. Hence, smaller values of F for larger
values of C ensure a more careful examination of the search space at each iteration of the
algorithm.

The second parameter control test was concerned with the ability of the algorithm to
converge to a valid a solution based on Eq. (5). Recalling that lower values of the Holevo
variance correspond to candidate solutions with a higher degree of accuracy and keeping
exactly the same configuration setup as before, the results obtained are shown in Table 3.

It is possible to see in Table 3 that the parameter configurations that previously lead the
algorithm to converge to a solution also lead the algorithm to converge to a valid solution
if and only if F > 0. Hence, the previously found rule can be made more specific: F < C
∀F > 0 guarantees the convergence of the DE algorithm to a valid solution. Note, however,
that the algorithm also obtained good performance results even with configurations that
did not follow the previously found rule. These are misleading results and can be quickly
disregarded, since the algorithm is told to stop regardless of having converged to a solu-
tion or not. Therefore, in these situations the resulting averaged solution among all the
populations may haphazardly coincide with a valid one. These situations must, neverthe-
less, be regarded as fortuitously events and not be considered as possible valid solutions
as the algorithm was not indeed able to converge to any solution.

Having arrived at the conclusion that F must be strictly smaller than C while still being
bigger than zero for the DE algorithm to work as desired, it is important to find the exact
parameter configuration that guarantees the most promising results. A more thorough
control test regarding the performance of the algorithm for each configuration following
this rule was conducted three times and its results averaged and presented in Fig. 10. Note
that this time, the step between the different parameter configurations was reduced to
avoid overlooking possible optimal parameter configurations.

Looking at the results in Fig. 10 it is possible to notice that the best results are obtained
among the configurations where C is only slightly bigger than F . It is also possible to no-
tice that these results seem to be stronger for values of F in the interval [0.3, 0.7]. Ensuring
that the step size at each iteration of the algorithm is not too big as to overstep a possible
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Figure 10 Visual representation of the performance values obtained for the DE algorithm based on the
logarithm of the Holevo variance ln(VH(F,C)) with the parameter configurations following the rule F < C
∀F > 0. Better configurations lead to lower values of ln(VH(F,C))

Table 4 Convergence values L(α,β) for the PSO algorithm. Convergence was considered only for
values of L≤ 0.1256, which corresponds to a maximum dispersion of approximately 2% of the entire
2π search space for each entry of the different candidate solution vector

α β

0 0.2 0.4 0.6 0.8 1

0 1.3231 1.3292 1.3139 1.3341 1.4045 1.3105
0.2 0.1239 0.1072 0.2193 0.2379 0.4736 0.4580
0.4 0.1014 0.0998 0.0974 0.1742 0.2328 0.4280
0.6 0.0771 0.0788 0.0808 0.0902 0.1296 0.2410
0.8 0.0821 0.0821 0.1072 0.0734 0.0806 0.1589
1 0.0835 0.0976 0.1008 0.0887 0.0708 0.0933

valid solution, it should not be too small either to avoid getting stuck in a local minimum.
This explains why these values of F lead to better results. Among these parameter con-
figurations, the ones where the value of C is in the interval [0.4, 0.8] and is only slightly
bigger than F lead to the overall best results. Hence, the optimal parameter configuration
considered for the DE algorithm is: F = 0.7 and C = 0.8.

A.3 Particle swarm optimization
The PSO algorithm has four controllable parameters of interest. Two of these parameters,
α and β , are mostly concerned with the ability of the algorithm to converge to a valid
solution, while the other two, w and vmax, regulate the speed at which the parameter will
converge to a solution.

As before, the first step is to study the overall ability of the algorithm to converge to a
solution with the different possible parameter configurations. Keeping in mind that only
the parameters α and β have a direct impact on the convergence process, all the remaining
parameters were set to a constant value and the results obtained are presented in Table 4.

Considering the results obtained, it is possible to see that as long as β > 0 the algorithm
is able to converge to a solution, even if it may take more than G = 50 iterations. This can
be intuitively understood by remembering that the β parameter defines the desirability of
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Table 5 Performance results based on the logarithm of the Holevo variance ln(VH(α,β)) for the PSO
algorithm. Values in bold represent the configurations which have achieved convergence in Table 4.
Lower variance values are obtained by solutions that lead to more precise estimations of the
unknown parameter that is being measured

α β

0 0.2 0.4 0.6 0.8 1

0 1.3082 2.3717 0.7076 1.5727 1.7540 6.0563
0.2 –1.5475 –1.3651 –1.6623 –1.4530 –0.8383 –1.0281
0.4 –1.4016 –1.5598 –1.5295 –1.6831 –1.6005 1.2126
0.6 –1.6229 –1.5110 –1.9324 –1.3650 –1.6605 –1.5408
0.8 –1.7227 –1.4539 –1.5615 –1.5828 –1.8361 –1.2132
1 –1.6869 –1.3290 –1.3956 –1.6726 –1.5909 –1.4826

each individual to follow the best found solution of the entire group until that point. Thus,
as long as this value is bigger than zero, each individual will feel the urge to move towards
the best globally found solution. In other words: β > 0 guarantees the convergence of the
PSO algorithm.

Additionally, it is also possible to notice that for values of β equal or larger than α the
algorithm is always able to converge to a solution within the stipulated number of itera-
tions. This leads to a second conclusion: β ≥ α ∀β > 0 guarantees the convergence of the
PSO algorithm within the given number of iterations. However, for β values much larger
than α the algorithm converges within very few iterations as it gets stuck in local minima.
These configurations privilege moving towards the already found best global solution in
detriment of exploring other new possible solutions.

Keeping the same configurations as before, it is necessary to study which of these pa-
rameter configurations lead to valid solutions. Referring to Eq. (5) to evaluate their per-
formance, the results obtained are shown in Table 5.

Considering the previously found rule and the results obtained in Table 5 is possible to
see that for β ≥ α while keeping β > 0 not only guarantees the convergence of the algo-
rithm, but also guarantees the convergence of the algorithm to a valid solution. Therefore,
it is possible to come to the conclusion that: β ≥ α ∀β > 0 guarantees the convergence of
the PSO algorithm within the given number of iterations to a valid solution.

Having arrived to this conclusion it is still important to determine which parameter con-
figuration leads to the best results. As before, a more thorough control test on the perfor-
mance of the algorithm under these conditions was conducted three times and its results
averaged and displayed in Fig. 11. Notice that, once again, there is a smaller increment
between each parameter step in order to avoid overlooking any possibly better parameter
configuration.

Unlike with the DE algorithm, the results obtained for the PSO algorithm are less con-
trasting. Even though configurations where the value of α and β are similar to each other
deliver slightly better results, it appears that having β ≥ α ∀β > 0 is a condition strong
enough to arrive at optimal candidate solutions. This robustness of the algorithm against
different possible parameter configurations would have allowed for a multiple number of
pair of configurations to be chosen. Therefore, the first two optimal controllable parame-
ters chosen for the PSO algorithm are α = 0.8 and β = 0.8 as they appear to stand out even
if only slightly.

To study how the remaining two controllable parameters, the update weight w and the
maximum velocity vmax, might impact the performance of the algorithm a similar study
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Figure 11 Visual representation of the performance values obtained for the PSO algorithm based on the
logarithm of the Holevo variance ln(VH(α,β)) with the parameter configurations following the rule β ≥ α

∀β > 0. Better configurations lead to lower values of ln(VH(α,β))

was also made for them. Keeping all of the other parameters constant and already using the
optimal configuration α = 0.8 and β = 0.8, the performance of the algorithm was studied
for the different possible configurations of w and vmax. However, this time all the different
configurations of these two parameters have lead the algorithm to converge to a solution
and, most importantly, to a valid one. This comes as no surprise since these parameters,
from a physical viewpoint of their behaviour on the search space, were not expected to
have any influence on the ability of the algorithm to converge to a solution. Their impact
was mostly expected on converging times.

Having arrived to an optimal configuration for the parameters α and β , the algorithm
is quite robust to any configuration of the parameters w and vmax and is able to converge
to a solution in the available number of iterations. It is nevertheless important to bare
in mind that these parameter analysis was made for N = 10. For larger values of N , the
convergence speed of the algorithms becomes more relevant as the search space scales
polynomially with N . Unfortunately, such a parameter evaluation would also have been
too computationally expensive and time consuming. Keeping this in mind, the optimal
configuration considered for the PSO algorithm is: α = 0.8, β = 0.8, w = 0.8 and vmax = 0.2.
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