
Parallel Hybrid Networks: an 
interplay between quantum 
and classical neural networks 

Machine learning 

By Terra Quantum AG

terraquantum.swiss 2023



Parallel Hybrid Networks:
an interplay between quantum and classical neural networks

Mohammad Kordzanganeh, Daria Kosichkina, and Alexey Melnikov
Terra Quantum AG, Kornhausstrasse 25, 9000 St. Gallen, Switzerland

Quantum neural networks represent a new machine learning paradigm that has recently attracted
much attention due to its potential promise. Under certain conditions, these models approximate
the distribution of their dataset with a truncated Fourier series. The trigonometric nature of this
fit could result in angle-embedded quantum neural networks struggling to fit the non-harmonic
features in a given dataset. Moreover, the interpretability of neural networks remains a challenge.
In this work, we introduce a new, interpretable class of hybrid quantum neural networks that pass
the inputs of the dataset in parallel to 1) a classical multi-layered perceptron and 2) a variational
quantum circuit, and then the outputs of the two are linearly combined. We observe that the
quantum neural network creates a smooth sinusoidal foundation base on the training set, and then
the classical perceptrons fill the non-harmonic gaps in the landscape. We demonstrate this claim
on two synthetic datasets sampled from periodic distributions with added protrusions as noise. The
training results indicate that the parallel hybrid network architecture could improve the solution
optimality on periodic datasets with additional noise.

I. INTRODUCTION

Machine learning and quantum computing have be-
come attractive research areas in recent years. The quest
for an efficient quantum neural network (QNN) has dom-
inated the cross-section of these two technologies. Many
suggestions have been made for the potential inner work-
ings of a classically-intractable quantum machine learn-
ing model [1, 2], but theoretical and hardware limitations
could prove challenging to implement. The noise-free
barren plateau problem [3] or the curse of dimensionality
[4] are examples of the theoretical challenges with QNNs.
At the same time, the hardware limitations point to the
industry limits on the accuracy, and the number of qubits
[5, 6]. Therefore, contemporary practical use of quantum
technologies in machine learning should come from com-
plementary quantum-classical architectures, called hy-
brid quantum neural networks (HQNN), that employ rel-
atively small, realisable quantum circuits and classical
multi-layered perceptrons (MLP) where the two work in
tandem. In [7–10], we explored the applicability and per-
formance of sequential HQNNs, where MLPs and QNNs
are connected in series, passing the information from one
network to another. The sequential HQNNs could in-
troduce information bottlenecks in the representational
power of the model, which could limit the expressivity
of the network. This work explores the theoretical basis
of parallel HQNNs, where variational quantum circuits
(VQC) and MLPs process information in parallel. The
approach is based on the universality theorems from two
sources: 1) MLPs can produce non-harmonic functions
[11] and 2) QNNs fit smooth truncated Fourier series on
the training data [12]. This work was inspired by the
Fourier neural operator introduced by Ref. [13].

In Sec II, we review the theoretical foundations of MLP
and VQCs, and in Sec III, we introduce the design and
experimental results of PHN. In Sec III B, we address
the potential problem of component primacy in training

PHNs, where either the VQC or the MLP could dominate
the training, and propose a remedy to it. Finally, in
Sec IV, we summarise our findings and discuss future
directions.

II. THEORETICAL FOUNDATION

In this study, we concentrate on solving a supervised
regression problem using a dataset (xi, yi), where xi ∈ X
is a feature vector and yi ∈ Y is the label. Our objective
is to discover a function f(x) that can approximate the
labels y of out-of-sample features. To achieve this, we
create a machine learning model with parameters θ to
create the functionality, fθ(x). We adjust these param-
eters according to the training sample to maximise the
probability of obtaining the correct label for a given fea-
ture. The general functionality f is a machine learning
architecture, while a specific realisation of its parameters,
θ, is a machine learning model. In the subsequent sec-
tions, we will explore two well-known architectures and
then use that theoretical foundation to justify the PHN
architecture in Sec III.

A. Multi-layered perceptrons

MLPs constitute a large class of successful machine
learning architectures. They are directional graphs
whose nodes are ordered in one-dimensional layers which
take input from the previous layer and provide the next
layer with their outputs. In the case of fully connected
MLPs (FCN), all neurons of each layer feed information
to all the neurons in their immediate front neighbour-
hood. Each edge of the graph has an associated multi-
plicative factor (weight), and each neuron has an asso-
ciated additive quantity (bias), which together form the
parameters of the MLP. The first neural layer is called
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the input layer, and the last is the logits. Ref. [14] pro-
vides a comprehensive overview of neural networks and
their properties.

Ref. [15] showed that MLPs are asymptotically uni-
versal approximators whose fit on the training data be-
comes perfect as the numbers of neurons in the interme-
diate neural layers approach infinity. Moreover, [11, 16]
proved this using a novel graphical method that showed a
fully-connected network with a single intermediate neural
layer can approximate any function by fitting a superpo-
sition of rectangular waves. To utilise this graph as a
machine learning architecture, we could encode the fea-
tures of a data point taken from the sample, xi, onto the
input layer and then propagate their values through the
graph by multiplying their values by the weights of the
architecture w and adding the biases b

hi = σ(w
(0)
i,j xj + bi), (1)

where σ is known as the activation function1, hi indicates
the values of the consecutive neural layer, and Einstein’s
summation notation is implied. The propagation process
can be passed along to the entire graph until we arrive
at the terminal nodes (in this case, for a single label, we
require a single terminal node). The terminal node is the
output of the function and is, therefore, the approxima-
tion of the model to the label associated with the input
features. We can then employ an optimisation strategy
such as the stochastic gradient descent [17] to improve
this approximation by adjusting the weights and biases.

B. Variational quantum circuits

Variational quantum circuits (VQC) employ varia-
tional group rotations to create a machine learning ar-
chitecture on a quantum computer [18–21]. To construct
a VQC, one could start by creating a quantum node
of several qubits in the ground state. Then, a series
of variational and fixed quantum gates can be applied
to the circuit. The variational gates could include the
Pauli rotation gates, which require single-qubit time evo-
lution Hamiltonians of the respective Pauli gate. The
fixed quantum gates might consist of the controlled-NOT
(CNOT) and the Hadamard (H) gates. We split the vari-
ational gates into embedding, and trainable gates, which
encode the features, x, and act as model parameters, θ.
At the end of the circuit, we measure the qubits in a
specified basis, such as the Pauli bases, and obtain either
a 0 or a 1. After many iterations of the circuit, we can
find the likelihood of getting a 0 over 1, and by taking

1 In this work, the particular functionality of the activation func-
tion is not material, and for simplicity, we take it to be the
sigmoid function everywhere, σ(t) = 1

1+e−t , and otherwise only

where clearly stated.

the average, we can obtain the expectation value of the
circuit. By the Born rule [22], we can find this probabil-
ity by taking the expectation of the measurement matrix,
M , and then using it as the output of our model:

f(x, θ) = 〈ψ(x, θ)|M |ψ(x, θ)〉 , (2)

where |ψ(x, θ)〉 denotes the state of the quantum circuit
before the measurement. We can improve this approx-
imation to the labels by optimising the parameters of
the VQC, θ. [12] proved that VQCs are also universal
approximators, and the way they work is by fitting a
truncated Fourier series over the samples:

f(x) =

L∑
k=−L

cke
ikx, (3)

where L is the highest degree Fourier term expressible by
the VQC.

III. RESULTS – PARALLEL HYBRID
NETWORKS

We split the HQNN hybrid interfaces into two cat-
egories: 1) sequential: where the classical and quan-
tum parts feed directly into each other, and 2) parallel:
where a classical multi-layered perceptron and a varia-
tional quantum circuit in parallel process the same in-
formation. In this section, we take an in-depth look into
HQNNs of the latter type and the functions they repre-
sent. We shall refer to these networks as parallel hybrid
networks (PHN). Fig 1 shows the general architecture
of PHNs. The combination is a weighted linear addition
with trainable weights. These weights determine the con-
tribution of each network to the final output. The spe-
cific VQC used here is a generalised data re-uploading

VQC, where K qubits are initialised in the state |0〉⊗K .
Then in alternation, a series of variational and encod-
ing layers are applied. The encoding layers S take the
input features, {x1, · · · , xN}, and encode them in a uni-
tary transformation which is then applied to the state of
the qubit. The variational layers, U , are unitaries that
encapsulate the VQC model parameters as an operator
that can be used for the quantum state of the network.
Finally, the measurements are where the quantum infor-
mation collapses into M classical outputs, which can be
obtained by taking the expectation value of the circuit
with respect to the measurement observable. Note the
difference between M , the number of classical outputs
out of the VQC, and K, the number of qubits, and that
they are not necessarily the same, as often we are only
required to measure some of the qubits.

In parallel, the fully connected MLP also takes in the
N features and passes them to a single layer of hidden
neurons of size F by multiplying the feature vector by a
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FIG. 1: The general architecture of the PHN. The PHN takes an input vector of features and passes them to an angle-embedded
VQC (a VQC that uses single-qubit, Pauli gate embedding of features without applying any non-linear kernel on the features)
of the appropriate architecture in parallel to a multi-layered perceptron with a single hidden layer of the appropriate size. The
outputs of the VQC are then combined linearly with the outputs of the MLP to produce a final output vector.

weight matrix of size N ×F . Then, biases are applied to
these values and scaled using an activation function. The
use of an activation function is necessary as it provides
a measure of non-linearity to an otherwise linear system.
Then, the neurons are propagated to M MLP output
neurons with their own biases and activation functions,
denoted as {c1, · · · , cM}. The MLP and VQC outputs
are then combined, using a two-to-one linear weight layer,
to form the PHN outputs, {o1, · · · , oM}. This final layer
combines the first output of the VQC with the first out-
put of the MLP: o1 = sc1c1+sq1q1, and similarly for all the
M outputs, where ({sq}, {sc}) are trainable parameters.

In Sec II, we saw that an MLP with a single hid-
den layer created a non-harmonic functional fit for the
dataset and that the VQC created a truncated Fourier
series, a harmonic function. Thus, a network combin-
ing these two results could map the smooth, sinusoidal
parts through the VQC and fill the protruding sections
via the MLP. This complementary setting has the poten-
tial to approximate a function that fits the dataset both
in the position space (MLP) and in the conjugate momen-
tum space (VQC). We could compare this duality to the
Fourier neural operator in Ref. [13] or the models with
benign overfitting in Ref. [23]. The scope of this work in-
cludes architectures that use multiple VQCs (MLPs) in
parallel, as they can always be combined to form a single
VQC (MLP).

A. Performance

We start with a ground truth consisting of an overall
single-frequency sinusoidal function and then introduce
high-frequency perturbations to this system. Specifically,
the functional form was

f = sin(x) + 0.05 sin(8x) + 0.03 sin(16x) + 0.01 sin(32x),

which was scaled to -1 and 1. 100 equally-spaced data
samples were taken from this distribution for training.
We train a simple PHN, described in detail in Appendix
A, to recreate the ground truth as accurately as possible.
We then train the individual constituents of the same
PHN architecture to see their performances. Fig 2 shows
the training loss curves, and Fig 3 shows the best fits that
each architecture created for the ground truth. The PHN
trains to a lower MSE training loss than its elements,
which suggests that adding the VQC improves the overall
expressivity of the MLP. Furthermore, by examining the
loss curves, we see that the PHN inherits the same speedy
descent as the VQC but also shares many of the features
present in the MLP loss curve, such as the spikes or the
gradual flattening near the end of training.

We see that the PHN outperforms both individual
components, which means that both the VQC and MLP
contribute to the training, and neither becomes redun-
dant. In Sec III B, we explore how to measure the contri-
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FIG. 2: (a) The training losses of the individual elements of the PHN when trained separately, as well as the full PHN. (b) The
scatter plot of final losses and their respective final ratios after 1000 epochs of training. The optimal loss value is achieved at
non-zero ratios, where ratios to the side of this value provide sub-optimal losses. Note that this figure only includes the runs
with learning rates whose final loss is low enough for comparison.

bution of each and how the tuning of hyper-parameters
could change this contribution.

FIG. 3: The functional fits of each architecture to the ground
truth. The VQC, expectedly, produced a sinusoidal curve.
The MLP created an overall curve close to a sinusoidal curve
but with jagged edges. The PHN, however, produced the best
result, predicting the protrusion at the peak.

B. PHN primacy

A way to understand the relative contributions of each
network is by inspecting the weights of the combination
phase, sq and sc, for VQC and MLP, respectively. In
this section, we look at how this contribution can unfold
when training the PHN.

When training a PHN, we must be wary that the VQC
and MLP train at different rates. We define the pri-
macy of one of the constituent architectures (VQC or

MLP) over another as when the last weights preceding
the PHN output layer vanish for one of the components.
Equivalently, this makes the output of the latter network
independent from the input features, which would mean
that the prediction curve is solely constructed by either
the MLP or the VQC. A primacy of this type could pre-
vent the PHN from reaching the global minimum, as it is
limited to what only one of the components could offer.

The ratio of the final weights, r = |sc|
|sq| , was

used to track intervals of different primacy regimes
recorded for different hyper-parameterisations of the
PHN. Specifically, we fixed the learning rate of
the VQC at 0.01 and then selected the learn-
ing rate of the MLP from 54 values of αc ∈
{1.0e−7, 2.0e−7, · · · , 9.0e−7, 1.0e−6, · · · , 9.0e−2}. We,
then, trained the PHN for 1000 epochs at a fixed initiali-
sation point. Lastly, we recorded the ratios r throughout
each training. The bigger the ratio, the more the MLP
would contribute compared with the VQC. Notably, even
a small contribution could make a critical difference, and
primacy occurs only when one of the contributions com-
pletely vanishes.

The dependence of the final loss on the ratio of the
final weights for the VQC and MLP, shown in Fig 2(b),
highlights the potential for either component to dominate
training in the PHN architecture. The results exhibit an
optimal range for the ratio between 0.1 and 1, indicating
that a balanced contribution from the VQC and MLP is
desirable for achieving the best results. It is also evident
that complete MLP primacy, where the ratio approaches
0, leads to worse final losses. However, we also observe
that adjusting the learning rates of the two components
can sometimes improve the loss. Therefore, tuning the
learning rates of the VQC and MLP is crucial to achieve
a balanced contribution from both parts and to prevent
either component from dominating the training.
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(d) PHN

FIG. 4: Figure (a) shows the ground truth for our 2D problem
in the form of a contour map. The predictions shown are
for the VQC (b), MLP (c), and PHN (d). We see that the
prediction of the VQC is smooth and convex, whereas the
MLP creates jagged shapes. Taking advantage of both of
these properties, the PHN represents the harmonic functions
of the VQC with the added, necessary protrusions.

FIG. 5: The evolution of the loss function of the PHN model
in Fig 6(b) and its constituents (VQC and MLP) on the 2D
dataset. The PHN achieves an impressively low training MSE
loss.

C. Scalability and generalisation

To show the scalability of the PHN, in this section, we
try a 2-dimensional problem with the view that this can

be scaled to an arbitrarily complex problem with many
qubits. To solve the problem in Fig. 4(a), a simple PHN,
described in Appendix. A, was employed. The distribu-
tion used to create this ground truth was

f(x1, x2) = sin(x1) + sin(x2) + 0.8 sin(x1 + x2)

+0.3 sin(x1 − x2) + 0.09 sin(8x1 + 4x2)

+0.05 sin(16x1 − 12x2) + 0.04 sin(12x1 + 8x2).

Note that this function (similarly to the 1D case) was
chosen entirely at random to have a coarse harmonic
structure (first four terms) as well as high-frequency noise
(the last three terms) and not engineered to showcase the
PHN in a favourable light. 100 equidistant points were
sampled from this ground truth to create a training set.
This set was then trained on only the VQC, MLP, and
the complete PHN for 10, 000 epochs. The trained mod-
els were then tested on 10, 000 equidistant points data
points to see the generalisation ability of each architec-
ture. Figs. 4(b), (c), and (d) respectively showcase the fit
of the VQC, MLP, and PHN, and Fig 5 shows the evolu-
tion of their training loss. We see that the VQC creates
a symmetric, sinusoidal pattern, whereas the MLP cre-
ates jagged regions to fit the ground truth. However, the
PHN can generalise the ground truth by employing both
elements and thus creates a closer fit, which could mean
that for such datasets, the PHN could provide a high
generalisation power over the MLP or the VQC.

IV. CONCLUSION

Overall, our findings demonstrate the potential of PHN
as a powerful tool for quantum machine learning. It
is a hybrid architecture that can extract harmonic and
non-harmonic features from a dataset. By leveraging its
unique architecture, the PHN can learn complex patterns
and relationships within the data that might be difficult
to capture using traditional machine learning algorithms.

However, it is essential to note that the performance
of the PHN is highly dependent on the choice of hyper-
parameters. The number of layers, number of neurons
in each layer, activation functions, and learning rate are
crucial in determining how well the network performs
on a given task. Therefore, hyperparameter tuning is a
critical step in training a successful PHN. One potential
direction for future research is to explore using a custom
learning rate scheduler to modify the learning rate during
training. A learning rate scheduler can dynamically ad-
just the learning rate based on the network’s performance
on the training set, allowing the model to learn more ef-
ficiently and converge faster. Implementing a learning
rate scheduler may further improve the performance of
the PHN on a wide range of tasks.
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Appendix A: The exact experimental setup

Figs 6(a) and 6(b) illustrate the PHN example ar-
chitectures used to produce the 1D and 2D results, re-
spectively. In both cases, the quantum measurement in
qout was made in the Z-basis, and the MLP utilised a
single hidden layer with the rectified linear unit (ReLU)
and sigmoid activation functions for the hidden and out-
put layers, cout, respectively. The MLP was fully con-
nected and included weights and biases. The outputs of
the MLP and VQC were linearly combined after being
weighted by sc and sq, respectively. The MLP had 769,
the VQC had 3, and the final weighing layer had two

parameters.

Fig 6(b) depicts a simple 2-dimensional PHN used to
demonstrate the scalability of the PHN. The activation
layers employed in the MLP were ReLU and sigmoid for
the first and second layers. The VQC produced a sin-
gle output, q1, which resulted from measuring the state
of the VQC in the Z

⊗
I basis, where the identity mea-

surement I is excluded from the diagram. A learning rate
of 0.01 was used for the VQC parameters and 0.001 for
all others. We also utilised the Adam optimiser and a
learning rate scheduler that multiplied all learning rates
by γ = 0.99 every ten epochs.
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FIG. 6: (a) The schematic diagram describes the joint work of the VQC with one qubit and a basic MLP architecture. (b) The
architecture includes a two-qubit VQC with only a measurement applied to the first qubit and an MLP with 128 neurons in
its singular hidden layer.
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