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Abstract: Quantum optimization algorithms are some of the most promising algorithms expected to
show a quantum advantage. When solving quadratic unconstrained binary optimization problems,
quantum optimization algorithms usually provide an approximate solution. The solution quality,
however, is not guaranteed to be good enough to warrant selecting it over the classical optimizer so-
lution, as it depends on the problem instance. Here, we present an algorithm based on a graph neural
network that can choose between a quantum optimizer and classical optimizer using performance
prediction. In addition, we present an approach that predicts the optimal parameters of a variational
quantum optimizer. We tested our approach with a specific quantum optimizer, the quantum approx-
imate optimization algorithm, applied to the Max-Cut problem, which is an example of a quadratic
unconstrained binary optimization problem. We observed qualitatively and quantitatively that graph
neural networks are suited for a performance prediction of up to nine-vertex Max-Cut instances with
a quantum approximate optimization algorithm with a depth of up to three. For the performance
prediction task, the average difference between the actual quantum algorithm performance and the
predicted performance is below 19.7% and, for the parameter prediction task, the solution using the
predicted parameters is within 2.7% of the optimal parameter solution. Our method therefore has the
capacity to find problems that are best suited for quantum solvers. The proposed method and the
corresponding algorithm can be used for hybrid quantum algorithm selection.

Keywords: quantum optimization; machine learning; graph neural networks; quantum approximate
optimization algorithm

1. Introduction

NP complete problems are computationally difficult problems that can be verified in
polynomial time. NP hard problems are problems that are at least as hard as NP complete
problems. Most algorithms and methods that exist today focus on solving the class of
“P” problems, i.e., problems that can be solved in polynomial time complexity. However,
a large number of practical applications require solutions to NP hard problems. Currently,
no known classical methods used to solve NP hard problems efficiently in polynomial
time exist.

It was in this context that quantum computing gained popularity. While algorithms
such as Shor’s algorithm and Grover’s algorithm demonstrated the ability of quantum al-
gorithms to provide speedups over their classical counterparts, interest in finding quantum
algorithms for solving NP hard problems approximately is growing. In recent times, varia-
tional quantum algorithms have emerged as a possible solution. Quantum optimization
algorithms are an example of this. Variational quantum algorithms have shown consider-
able promise due to their applicability to near-term quantum hardware. However, despite
their potential, there are still challenges to overcome.

Quantum hardware is currently difficult to access and one would prefer to use it only
in cases where the quality of the solution given by it is good. The problem of predicting the
performance of a quantum algorithm is therefore relevant. Several previous works have
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attempted to discover patterns in graphs that could indicate whether or not a particular
graph has a quantum advantage [1–6]. Machine learning techniques have been explored
for this problem too. In this paper, we designed a graph neural network that can give
insights into the quality of the solution provided by a quantum optimization algorithm in a
quadratic unconstrained binary optimization (QUBO) problem. Specifically, we quantified
the performance of the quantum approximate optimization algorithm (QAOA) applied to
the Max-Cut problem using the approximation ratio: the ratio of the expected cut value
using QAOA to the theoretical maximum cut value.

However, even with the guarantee of a good quality solution, gate parameter opti-
mization is a major drawback of variational algorithms since it increases the amount of
computation required and considerably slows down the algorithm. Therefore, there has
been an effort by the community to find ways to speed this up [7]. Some approaches have
employed the use of machine learning in this effort [8–10]. Machine learning has shown
applications in a wide array of of fields [11–13]. With the rise of neural networks, whether
or not they can be used to solve the gate parameter optimization problem has become a
natural question. Although, for certain subsets of this problem, analytical expressions have
been derived, it remains unclear how to calculate these gate parameters in the general case.
We explored the use of graph neural networks to solve this problem.

The remainder of the paper is organized as follows. We describe QUBO problems
and graph neural networks in Section 2. We present our proposed machine-learning-based
method in Section 3. In Section 4, we describe our machine learning setup, the results of
which are presented in Section 5. Finally, in Section 6, we conclude this paper and discuss
future research.

2. Quantum Optimization
2.1. Quadratic Unconstrained Binary Optimization Problems

Quadratic unconstrained binary optimization (QUBO) problems are NP hard problems
that can formulated as: maximize C, where

C =
n

∑
i=1

i

∑
j=1

qijxixj (1)

subject to xi ∈ {0, 1}, where 1 ≤ i ≤ n. Several problems of practical importance can
be formulated as QUBO problems. Applications exist in areas such as network flows,
scheduling, Max-Cut, Max-Clique, vertex cover, and other graph science problems [14].

Due to the structure of QUBO problems, they can be represented as graphs. Consider
a graph G = [N, E] with vertex set N = 1, 2, 3, . . . n and undirected edge set E = {(i, j) :,
where {i, j} ∈ N}. Denoting the edge weight of (i, j) as ci,j and vertex weights as ci, the
problem can be equivalently reformulated as: maximize C, where

C = ∑
i∈N

cixi + ∑
(i,j)∈E

cijxixj (2)

with xi ∈ {0, 1}, where i ∈ N. As an example of a QUBO problem, we consider the Max-Cut
problem next.

2.2. The Max-Cut Optimization Problem

Max-Cut is an optimization problem that looks for a partitioning of the vertices of a
graph into two sets, such that the maximum number of edges between the two sets exist.
An example of the Max-Cut problem with five vertices is shown in Figure 1. Formally,
given a graph G = (V, E), where V is the set of vertex labels, and E = {< j, k >: j, k ∈ V} is
the set of unweighted edges, the Max-Cut problem seeks to assign a binary label zj ∈ {0, 1}
to each vertex, such that the cost function Cz is maximized. Here,
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Cz = ∑
〈j,k〉

C〈j,k〉(z) (3)

and

C〈j,k〉(z) = zj + zk − 2zjzk =

{
1 zj 6= zk
0 zj = zk

(4)

This is a QUBO problem because it can be rewritten in the form of Equation (2), where
all of the ci are equal to DEGREE(i) and all of the ci,j are −2 if the edge (i, j) exists in the
Max-Cut graph; otherwise, 0.

Solution: a maximum cutFind a maximum cut

Optimization

Figure 1. The maximum cut (Max-Cut) optimization problem. An example of the problem formu-
lation is given (left), as well as one possible solution (right) that can be obtained with an optimiza-
tion algorithm.

2.3. The Quantum Approximate Optimization Algorithm

Quantum optimization algorithms have the potential to outperform classical algo-
rithms in solving QUBO problems. The quantum approximate optimization algorithm
(QAOA) is a variational algorithm that is able to find approximate solutions to combina-
torial optimization problems. An instance of the problem is specified by a cost function
Cz, where z represents a series of bits, the length depending on the problem size. QAOA
works by encoding the bit string z as a series of qubits and applying transformations to
them. These transformations are parameterized, and, with the optimal parameters, the al-
gorithm produces an output with a high cost function expectation value. Using repeated
measurements, the algorithm then collects a state with a cost greater than or equal to this
expectation value.

Specifically, the algorithm starts with the qubits in a uniform superposition of possible
computational basis states.

|ψ0〉 =
1√
2n

2n−1

∑
z=0
|z〉 (5)

Then, a series of p unitary operations, each characterized by the angles β and γ, is
applied. After these transformations, the state becomes:

∣∣ψp(γ, β)
〉
=

(
p

∏
q=1

UB
(

βq
)
UC
(
γq
))
|ψ0〉. (6)

where the two unitary transitions are

UC
(
γq
)
= exp

(
−iγqC

)
(7)

which adds a cost-dependent phase to each term in the state, and

UB
(

βq
)
= exp

(
−iβqB

)
(8)
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which implements coupling in the computational basis by using:

B =
n−1

∑
j=0

Xj, (9)

where Xj is the quantum NOT gate operator on the j’th qubit.

2.4. Solving Max-Cut Using QAOA

Being a combinatorial optimization problem, Max-Cut has the potential to be solved
approximately by QAOA. This follows from the simple substitution of

Cz = ∑
〈j,k〉

C〈j,k〉(z) (10)

into QAOA.
The scheme of solving the Max-Cut optimization problem with QAOA is shown in

Figure 2. For every graph vertex, a single qubit is being used. Each qubit is initialized
in the |+〉 = (|0〉+ |1〉)/

√
2 state, and is processed by variational quantum operations in

the quantum device. Variational quantum operations are composed of unitary operations
UC
(
γq
)

and UB
(

βq
)
, which are defined in Equations (7) and (8), respectively. After the

variational qubits processing, qubits are measured and the measurement results (0 and
1) determine which partition the corresponding vertex belongs to; see two partitions in
Figure 1 (right) as an example. The partitions determine the number of cuts that allows us
to calculate the cost Cz on the classical device. The calculated cost, in turn, determines how
gate parameters are going to change in the next iteration.

quantum device

p
a
r
a
m

e
t
e
r

o
p
t
im

iz
a
t
io

n

classical device

parameter update

Figure 2. A QAOA circuit of depth p that is used to solve the Max-Cut problem. The measurement
outcomes are used by the classical device to update the gate parameters for the next iteration of
optimization. The edges that have end vertices of different colours can be cut.

3. Method

In this paper, we propose a new method of using graph neural networks for predicting
the performance and parameters of a QUBO problem on a variational quantum algorithm
using graph neural networks.

There have been several works that have explored related areas. For performance
prediction, Ref. [2] explored using machine learning (ML) to classify a problem instance as
a quantum advantage or classical advantage. Some graph features are handpicked and ML
models are trained on them. This method requires handpicking features of the graph to
train ML models, as opposed to our method, which directly inputs the graph into a graph
neural network.

For parameter prediction, a number of approaches have been considered in the litera-
ture. While some methods use reinforcement learning [10] to make the QAOA parameter
optimization more efficient, some use recurrent neural networks [9] to find the optimal pa-
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rameters in a reduced number of iterations. The correlation between parameters at different
depths have also been studied using machine learning [8]. These correlations are exploited
to predict deeper gate parameters close to the optimum values, allowing for convergence
in fewer iterations. In Ref. [15], tensor network techniques are used to find the average
parameters for each class of graphs. Then, these values are used as parameter predictions
for graphs from that particular class. Recently, parallel to our work, the authors of Ref. [16]
explored using graph neural networks for QAOA parameter initialisation. While this is
closely related, there are a few differences. In this paper, vertex level regression is used to
infer the parameters under an unsupervised learning setting, whereas, in our case, we used
supervised graph level regression directly.

Our approach begins by generating the dataset consisting of graph representations
of instances of the given QUBO problem. The graph representation of a QUBO problem
can be constructed according to Section 2.1. Their corresponding quality of solution (ap-
proximation ratio) provided by the chosen variational algorithm is the label. This dataset
was then used to train a graph neural network. This trained graph neural network could
then be used to predict the performance and optimal parameters of the chosen variational
algorithm on new problem instances. If the quality is satisfactory, the quantum optimizer
can be chosen. If not, the classical optimizer. Performing algorithm selection of this kind
would limit the use of quantum hardware only to cases where using quantum hardware is
indicated as providing a good quality solution.

In the second part of the method, if the quantum optimizer is chosen, to speed up
parameter selection, another graph neural network can be used. This graph neural network
is trained on a new dataset also consisting of graph representations of instances of the
given combinatorial optimization problem. However, the label now is their corresponding
optimal parameter values. New instances can be solved using the parameters predicted by
this graph neural network. Figure 3 shows the two tasks explored in this paper.

1.

2.

quantum

optimization

quantum

optimization

quantum optimization

performance prediction

quantum optimization

parameters prediction

D
a
t
a
b
a
s
e
 o

f 
s
o
lu

t
io

n
s

graph neural networks

12,111.

12,112.

quantum

optimization

quantum

optimization

Figure 3. The two tasks explored in this paper: (a) performance prediction of a quantum opti-
mization algorithm, and (b) parameters prediction of a variational quantum circuit of a quantum
optimization algorithm.

In the machine learning setup, we chose QAOA as our variational algorithm and
Max-Cut as our QUBO problem. We constructed the QUBO representation of our Max-Cut
problem and drew the QUBO graph Representation as described earlier. Since this graph is
the same as the original Max-Cut graph, we can directly train our graph neural networks
on the original Max-Cut graphs.

Figure 4a,b show the above-mentioned method in action on two Max-Cut graph
problem instances. For p = 1, p = 2, and p = 3, in each case, the graph was first encoded
and then the trained graph neural network was used to predict the performance of the
QAOA solution. If satisfactory, a different trained graph neural network was used to
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predict the parameters of the QAOA solution. Ultimately, QAOA outputs a high-quality
solution. The whole process can be found in Algorithm 1. Two examples of the algorithm
in action can be found in Figure 4.

Algorithm 1 Algorithm selection and parameter prediction given a threshold ‘t’ decided
by user requirements. If predicted performance is greater than t, the quantum optimizer
is chosen
Require: GNNPerformance Predictor, GNNParameter Predictor, t

1: Use GNNPerformance Predictor to obtain r̂
2: if r̂ > t then
3: Use GNNParameter Predictor to obtain predicted parameters optβ, optγ
4: Run QAOA on the predicted parameters to obtain the approximate solution
5: else
6: Use a classical optimizer to obtain the solution
7: end if

Actual Optimal Parameters

Cost Function using Predicted Optimal Parameters

p=1 p=2 p=3

0.7752 0.8749 0.9193

0.7782 0.8692 0.9159

[−0.111,−0.206] [−0.157,−0.096,−0.153,−0.303] [−0.099,−0.11,−0.037,−0.123,−0.21,−0.229]

[−0.125,−0.223] [−0.142,−0.086,−0.168,−0.254] [−0.156,−0.093,−0.06,−0146,−0.229,−0.216]

6.9624 7.7316 7.885

7.0041 7.8227 8.2428

Predicted Performance

Actual Performance

Predicted Optimal Parameters

Cost Function using Actual Optimal Parameters

Actual Optimal Parameters

Cost Function using Predicted Optimal Parameters

p=1 p=2 p=3

0.7635 0.8579 0.8999

0.7659 0.8559 0.9049

[−0.11,−0.202] [−0.153,−0.093,−0.148,−0.29] [−0.099,−0.108,−0.037,−0.123,−0.207,−0.226]

[−0.117,−0.251] [−0.109,0.085,−0.364,0.788] [−0.099,−0.08,0.068,−0.145,−0.295,0.813]

6.0899 6.6523 6.8683

6.1274 6.847 7.2394

Predicted Performance

Actual Performance

Predicted Optimal Parameters

Cost Function using Actual Optimal Parameters

Figure 4. Examples on two instances: (a) Instance 1 (b) Instance 2.

A brief description of graph neural networks (GNNs) follows. Due to the versatility
and expressive power of graphs, there is much interest in the analysis of graph data.
To properly analyze a graph, the ability to extract features from a graph without discarding
spatial information is important. The idea of applying neural networks to graph data has
existed for some time now [17–19]. The idea was to iteratively propagate information from
neighbors, after transformation, until a fixed point was reached. This fixed point would
then provide features that encoded the spatial layout in them.

There have been many improvements and advances in the study of GNNs after
this initial work. The field has become diverse, with many different approaches [20].
Convolutional graph neural networks attempt to generalize the convolution operation used
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in traditional CNNs to graphs. Based on the convolution operation used, ConvGNNs can
be classified into the following:

1. Spectral-based approaches: Based on solid mathematics of graph signal processing,
spectral-based approaches define convolution slightly differently. After applying a
graph Fourier transform that converts the input graph signal into its projection in the
space based on the eigenvectors of the normalized graph Laplacian, the convolution
is defined in terms of the Fourier transform.

2. Spatial-based approaches: These approaches are a more direct adaptation of the
convolution defined for image data to non-Euclidean data. They use the message
passing paradigm.

Although spectral-based methods are theoretically sound and based on the mathemat-
ics of graph signal processing, spatial models are more efficient and more generalizable.
Adding to all of this, T. N. Kipf and M. Welling showed in Ref. [21] that a spatial message
passing approach can be derived from an approximation in a spectral approach. Since then,
spatial methods have become the more popular kind of ConvGNN to use.

Graph neural networks are uniquely suited to graph problems, in that they are invari-
ant to the relabelling of vertices (shown in Figure 5) and are able to encode information
about the structure of the graph into a vector format, which can then be used for regression
and classification problems. In other words, they are able to exploit the fact that isomorphic
graphs, despite different vertex labelling, have the same solutions. In QAOA Max-Cut,
where the gate parameters are independent of the vertex labels and, consequently, the order
of the qubits, the prediction of these values makes it a problem suitable for GNNs to solve.

Graph

neural network

Same output for

isomorphic graphs

Graph

neural network

1

1

2

6

6

7

7

3

3

4

4

9

9

8

8

5

5

2

Figure 5. Graph neural networks are invariant to node relabelling, and wil encode the same structural
informaion if the nodes are relabelled.

The architecture of the graph neural network used in this paper is described below,
and is depicted in Figure 6. In this case, since all of the edge weights are the same, we
chose to ignore them. Therefore, the graph isomorphism network works. If edge weights
become important, a different graph neural network architecture may need to be chosen.
Introduced in Ref. [22], the graph isomorphism network is provably as powerful as the
Weisfeiler–Lehman test at differentiating between graph structures. It has a propagation
step of:

h(k)v = MLP(k)

(1 + ε(k)
)
· h(k−1)

v + ∑
u∈N (v)

h(k−1)
u

, (11)
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which is essentially summing all of the features of neighboring vertices and itself (weighted
epsilon) and then transforming it using a multi-layer perceptron. This happens multiple
times for each layer of convolution. Finally, there is a global readout using sum pooling.
This is then passed through another multi-layer perceptron to obtain the required output.

output 

fully

connected

layers

structural

information

in nodes

graph

transform

input

graph

graph

aggregation

pooling,

readout,

flattening

Figure 6. Graph neural network scheme that is constructed to predict quantum optimizer perfor-
mance in QUBO problems, as well as the corresponding parameters of the quantum optimizer.

4. Machine Learning Setup

Created by the authors, of Ref. [23], the dataset found in [24] was used. This particular
dataset contains the results of QAOA simulations on all non-isomorphic connected graphs,
with the number of vertices ranging from two to nine, and the depth p ranging from one to
three. We adapted this dataset to our specific tasks by generating train and test splits. We
represented a single graph in the dataset by Gi and used the following notation:

Gi = (Vi, Ei),

ni = |Vi|,
ei = |Ei|.

(12)

4.1. Performance Prediction

We constructed a dataset D1 that consists of all graphs and their corresponding optimal
approximation value using QAOA, with the following split:

GTrain =
{(

Gi, ropti

)
| ni < 9

}
, (13)

GTest =
{(

Gi, ropti

)
| ni = 9

}
. (14)

where ropti
is the optimal approximation ratio on graph Gi. An implication of this is that

the test set becomes much larger than the train set, as shown in Figure 7.
The goal is to learn an estimator function fθ for the optimal approximation ratio ropt

given a graph Gi
r̂opti

= fθ(Gi). (15)

We achieved this by minimizing the mean squared error loss function on the training
set using gradient descent until convergence:

L(θ) = ∑
Gi∈GTrain

(r̂opti
− ropti

)2

|GTrain|
. (16)

Cross validation was performed on the training set to determine the hyperparameters.
A GIN with 10 layers, each containing 128 hidden units, was used. Jump connections
followed by sum-pooling were used for global pooling. Three fully connected layers
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followed. Since the output value is between 0 and 1, a sigmoid layer was also used before
the final output. In the entire network, ReLU was used for the non-linear transformations.
Training was performed over 1000 epochs with a learning rate of 0.0001 using the Adam
optimizer and the above MSE loss function. Only a single batch was used, which made the
learning stable. The test metrics used were root mean square error (RMSE), mean absolute
error (MAE), and mean percentage error (MPE).

Test DatasetTrain

Dataset

Train Dataset

(10 fold cross validation)

9 node graphs (size=261,080)

                   2-8 node 

                                  graphs (size=12,112)

8 node graphs (size=11,117)

7 node

               graphs (size=853)

Figure 7. The training set contains graphs with less than 9 vertices and the test set contains graphs
with exactly 9 vertices. Therefore, the test set is much larger than the training set.

4.2. Gate Parameters Prediction

We constructed a dataset D2 that consists of all graphs and their corresponding optimal
parameters for QAOA, with the following split:

GTrain =
{(

Gi, [βopti
, γopti

]
) | ni < 9

}
, (17)

GTest =
{(

Gi, [βopti
, γopti

]
) | ni = 9

}
. (18)

In this task, the goal is to learn an estimator function fθ for the QAOA parameters
βopti

, γopti
given a graph Gi [

β̂opti
, γ̂opti

] T
= fθ( Gi ),

β̂opt =
[

β̂1opt , β̂2opt , . . . β̂popt

]
γ̂opt =

[
γ̂1opt , γ̂2opt , . . . γ̂popt

]
.

(19)

We achieved this by using gradient descent on the MSE loss function:

L(θ) =
1
n ∑

Gi∈GTrain

(e2
i ), (20)

where

e2
i =

1
2p

p

∑
j=1

(β jopti
− β̂ jopti

)2 + (γjopti
− γ̂jopti

)2. (21)

Similar to the previous task, cross validation was performed on the training set to
determine the hyperparameters. A GIN with 10 layers, each containing 128 hidden units
followed by jump connections and then sum-pooling, were used. Three fully connected lay-
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ers followed. ReLU was used for the non-linear transformations. Training was performed
over 50 epochs with a learning rate of 0.0001 using the Adam optimizer and the above MSE
loss function. Only a single batch was used, which made the learning stable.

To test how good our predicted parameters were, we looked at two metrics:

∆C = ∑
Gi∈GTest

∆Ci
|GTest|

(22)

where
∆Ci = 〈Fp

(
βopti

, γopti

)
〉 − 〈Fp

(
β̂opti

, γ̂opti

)
〉. (23)

We also looked at the average approximation ratio:

r
(

β̂opt, γ̂opt

)
= ∑

Gi∈GTest

〈Fp

(
β̂opti

, γ̂opti

)
〉/CTheoreticalMaxi

|GTest|
. (24)

Finally, we looked at the mean percentage error (MPE) of r
(

β̂opt, γ̂opt

)
.

5. Results

Figure 8 displays the training curves of the machine learning approach presented
in this paper. Figure 8a shows the values of RMSE validation loss for the performance
prediction (approximation ratio) prediction task. These values are the averages over the
10 folds of cross-validation training. As p increases, the prediction seems to become more
accurate. This could be because the performance of QAOA on a given graph strictly
increases with depth p, and the range of the approximation ratio shrinks, making it easier
to predict.

p=2

p=1

p=3

p=2

p=3

p=1

p=2

p=1

p=3

Figure 8. Summary of the validation set metrics across training epochs. (a) Performance (approx-
imation ratio) prediction validation loss during the learning process. (b) Parameter prediction
validation loss during the learning process. (c) ∆C as described in Equation (22), but on graphs in the
validation set.
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Figure 8b shows the values of RMSE validation loss for the parameter prediction task.
These values are the averages over the 10 folds of cross-validation training. Figure 8c shows
the fill between ∆C− stddev(∆C) and ∆C + stddev(∆C) on the validation set. The values
seem to become systematically worse as p increases. This is likely because the number of
output values (in this case parameters) goes up with p. Considering that each parameter
has some error delta e, the error builds up with the number of parameters, and the L2 norm
(distance) from the true optimal parameters also increases.

Table 1 shows the performance prediction metrics on the test set. Here, the trained
graph neural network was used to predict the optimal performance of graphs in the test
set, and then the mean squared error and mean absolute error were calculated over all test
set graphs. Similarly, Table 2 shows the parameter prediction metrics on the test set. Here,
the trained graph neural network was used to predict the optimal parameters of graphs in
the test set, and then the cost delta and approximation values were calculated using these
predicted parameters. For comparison, the approximation ratio using optimal parameters
is also shown in the same table as ropt.

Table 1. Task 1: Performance prediction test set metrics for p = 1, 2, 3.

p Value RMSE MAE MPE

1 0.1962 0.1734 19.62%
2 0.1704 0.1573 16.41%
3 0.1638 0.1424 15.58%

Table 2. Task 2: Parameter prediction test set metrics for p = 1, 2, 3.

p Value ∆C r
(

β̂opt, γ̂opt

)
ropt MPE of r

(
β̂opt, γ̂opt

)
1 0.1324 0.7999 0.8089 1.05%
2 0.2327 0.8576 0.8742 1.87%
3 0.3305 0.8898 0.9144 2.64%

6. Discussion

As observed, the graph neural networks learned to generalize both the performance
prediction and parameter prediction to unknown and larger graphs. Our approach was
tested on the QAOA optimization algorithm applied to Max-Cut problem instances with
up to nine vertices. For the performance prediction task, our prediction was, on average,
19.62% in the range of the actual value for p = 1, 16.41% for p = 2, and 15.58% for p = 3.
For the parameter prediction task, the expected cost function using our prediction was, on
average, 1.05% in the range of the actual QAOA optimal value for p = 1, 1.87% for p = 2,
and 2.64% for p = 3.

We also notice that, for both tasks, our method performs better on the test set (larger
graphs) than on the validation set (other non-isomorphic graphs of the same size). This is
possibly because the GNN is able to reuse structural information of smaller graphs that
is similar to the larger graph, but finds it harder to generalize across completely different
structures of graphs of the same size, which are present in the validation set.

However, these predictions come with some drawbacks. In the case of performance
prediction, the prediction values seem to more sharply peak around the mean value than
the actual performance values. This could possibly mean that the graph neural network is
not performing so well when learning the features that determine the performance, and is
instead just predicting around the mean value. This is similar for parameter prediction.
Further investigation is required.

As explained before, while, in theory, it would be possible to use this method to
obtain performance and parameter predictions for other QUBO problems such as number-
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partitioning, this paper only conducted experiments on the MaxCut dataset. Therefore,
the performance on other datasets needs to be explored in future experiments.

In this paper, however, we demonstrated that GNNs do in fact have the potential to
improve the QAOA algorithm, and possibly other quantum algorithms. We therefore add
to the list of hybrid quantum–classical approaches used to solve computationally hard
problems and call for further research into this problem.
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