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Image recognition and classification are fundamental tasks with diverse practical applications
across various industries, making them critical in the modern world. Recently, machine learn-
ing models, particularly neural networks, have emerged as powerful tools for solving these prob-
lems. However, the utilization of quantum effects through hybrid quantum-classical approaches
can further enhance the capabilities of traditional classical models. Here, we propose two hybrid
quantum-classical models: a neural network with parallel quantum layers and a neural network with
a quanvolutional layer, which address image classification problems. One of our hybrid quantum
approaches demonstrates remarkable accuracy of more than 99% on the MNIST dataset. Notably,
in the proposed quantum circuits all variational parameters are trainable, and we divide the quan-
tum part into multiple parallel variational quantum circuits for efficient neural network learning.
In summary, our study contributes to the ongoing research on improving image recognition and
classification using quantum machine learning techniques. Our results provide promising evidence
for the potential of hybrid quantum-classical models to further advance these tasks in various fields,
including healthcare, security, and marketing.

Introduction

Image classification is a critical task in the modern
world due to its wide range of practical applications in
various fields [1]. For instance, in medical imaging, im-
age classification algorithms have been shown to signif-
icantly improve the accuracy and speed of diagnoses of
many diseases [2, 3]. In the field of autonomous vehicles,
image classification plays a crucial role in object detec-
tion, tracking, and classification, which is necessary for
safe and efficient navigation.

Deep learning approaches [4] like deep convolutional
neural networks (CNNs) have emerged as powerful tools
for image classification and recognition tasks [5, 6],
achieving state-of-the-art performance on various bench-
mark datasets [7, 8]. However, as the amount of visual
data increases, modern neural networks are facing signif-
icant computational challenges.

Quantum technologies, on the other hand, offer the
potential to overcome this computational limitation by
harnessing the power of quantum mechanics to perform
computations in parallel [9]. Quantum machine learn-
ing (QML) is a rapidly evolving field that combines the
principles of quantum mechanics and classical machine
learning [10, 11]. This field has the potential to rev-
olutionize various areas of computing, including image
classification [12, 13]. It has attracted significant atten-
tion due to its potential to solve computational problems
that classical computers are unable to solve efficiently [9].
This potential arises from the unique features of quan-
tum computing, such as superposition and entanglement,
which can provide an exponential speedup for specific
machine learning tasks [14]. Moreover, QML algorithms
produce probabilistic results, which is very natural for
classification problems [15] and also act in an exponen-
tially bigger search space, which greatly increases their
performance [16–18]. However, the real-world implemen-
tation of quantum algorithms faces significant challenges,
such as the need for error correction and the high sensi-

tivity of quantum systems to external disturbances [19].
Despite these challenges, QML has shown promising re-
sults in several applications [20]. In the context of image
classification, QML algorithms can process large datasets
of images more efficiently than classical algorithms, lead-
ing to faster and more accurate classification [21].

A promising area of research within QML for im-
age classification is the hybrid quantum neural network
(HQNN) [14]. HQNNs combine classical deep learning
architectures with QML algorithms [22–26], namely Vari-
ational Quantum Circuits (VQCs), creating a hybrid sys-
tem that leverages the strengths of both classical and
quantum computing. This approach allows for the pro-
cessing of large datasets with greater efficiency than clas-
sical deep learning architectures alone [27]. HQNNs have
shown promise in a variety of tasks including image clas-
sification [28], regression problems [29], even satellite mis-
sion planning [30] and personalized medicine [31]. Fur-
ther research is needed to explore the full potential of
HQNNs in image classification and to develop more ro-
bust and scalable algorithms.

In this article, we propose two approaches to lever-
age quantum computing in the field of image recogni-
tion. The first approach involves applying parallel VQCs
after classical deep convolutional layers, while the second
approach involves using a HQNN with a quanvolutional
layer. We evaluate the performance of these hybrid mod-
els on the MNIST dataset of hand-written digits, which
is described in Section A, and demonstrate their ability
to classify images.

The first model (described in Section B) combines clas-
sical convolutional layers with parallel quantum layers
(HQNN-Parallel). The quantum part is analogous to a
classical fully connected layer. We compare the hybrid
model with its most closely corresponding classical coun-
terpart (in terms of the architecture and the number of
layers) and observe that the hybrid model outperforms
the classical model in accuracy (achieving 99.21% accu-
racy) despite having eight times fewer parameters.
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In the second model (described in Section C), we intro-
duce HQNN with quanvolutional layer (HQNN-Quanv),
which is a filter that applies a convolution to the in-
put image and reduces its resolution. The HQNN-Quanv
achieves a similar accuracy to the classical model (67%
accuracy) despite having four times fewer trainable pa-
rameters in the first layer compared to the classical coun-
terpart. Additionally, the hybrid model outperforms the
classical model with the same number of weights.

Every parameter in both of our models is trainable,
which allows us to achieve such remarkable accuracy.
This highlights the potential of quantum computing and
quantum machine learning (QML) in advancing the field
of image recognition. Our results contribute to the on-
going research in this area and demonstrate the exciting
possibilities for the future of QML in other fields.

Results

A. Dataset

This section describes the dataset we use which is
called Modified National Institute of Standards and Tech-
nology (MNIST) [32]. The MNIST database consists of a
large collection of gray-scale handwritten numbers, rang-
ing from 0 to 9. Sample images from the dataset are pre-
sented in Fig. 1. Each image has a resolution of 28× 28
pixels, and the main objective is to classify each image by
assigning a class label using a neural network. In other
words, the task is to recognize which digit is present in
the image. This dataset is widely used for making first
steps in the sphere of machine learning. Nevertheless,
it is worth-studying as it helps test the performance of
various neural networks models [33, 34], especially mod-
els with VQCs. The MNIST dataset used in this study
comprises a total of 70000 images, with 60000 images
reserved for training and 10000 images for testing. How-
ever, in certain cases, it may be advantageous to reduce
the number of images in order to expedite the training
process and gain immediate insights into the model’s per-
formance.

Despite being a widely used dataset, the MNIST
database contains a few images that are broken or am-
biguous, making it challenging for even humans to make
a clear judgment. Fig. 2 provides examples of such im-
ages. However, our introduced hybrid model can deter-
mine what the number is in the image with over 99%
accuracy.

B. Hybrid Quantum Neural Network with parallel
quantum dense layers, HQNN-Parallel

This section describes our first proposed model, the
Hybrid Quantum Neural Network with parallel quantum
dense layers, each of which is a VQC. Section B 3 shows
the results and comparison of the hybrid model with its
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FIG. 1: Examples of images from the MNIST dataset
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FIG. 2: Examples of ambiguous images from the MNIST
dataset.

classical counterpart, CNN B 4. The HQNN-Parallel con-
sists of two main components: a classical convolutional
block B 1 and a combination of classical fully connected
and parallel quantum layers B 2. The primary objective
of the classical convolutional block is to reduce the di-
mensionality of the input data and prepare it for subse-
quent processing. The classical fully connected and par-
allel quantum layers constitute the core of the HQNN-
Parallel, and are responsible for prediction tasks of the
model. Further details on the architecture and imple-
mentation of the HQNN-Parallel are presented in subse-
quent sections.

1. Classical Convolutional Layers

Fig. 3 depicts the general structure of the classical con-
volutional part of the proposed HQNN-Parallel. The con-
volutional part of the network is comprised of two main
blocks, followed by fully-connected layers. In this study,
we utilized Rectified Linear Unit (ReLU) as the activa-
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FIG. 3: Architecture of the proposed HQNN-Parallel. The input data samples are transformed by a series of convolutional layers,
which extract relevant features from the input and reduce the input dimensionality. The output channels of the convolutional
layers are then flattened into a single vector and fed into the dense part of the HQNN-Parallel. The hybrid dense part contains
both classical and quantum layers. The quantum layers are implemented using parallel VQCs, which allow for simultaneous
execution, reducing the total computation time. The output of the last classical fully connected layer is a predicted digit
between 0 and 9.

tion function [35]. Batch Normalization [36] is employed
in the network as it stabilizes the training process and
improves the accuracy of the model.

The first block of the convolutional part of the HQNN-
Parallel comprises a convolutional layer with one input
channel and 16 output channels, utilizing a square ker-
nel of size 5 × 5. The layer operates with a stride of
one pixel and applies a two-pixel padding to the input
data. Batch Normalization is applied to the output of
the convolutional layer, followed by an activation func-
tion (ReLU) and MaxPooling [37] with a kernel size of
two pixels. The resulting feature map has dimensions of
16× 14× 14 pixels.

The second block contains a convolutional layer with
16 input channels and 32 output channels, utilizing the
same kernel size and padding as the previous layer. The
MaxPooling parameters remain unchanged, resulting in
a feature map with dimensions of 32×7×7 pixels, which
will become an input for the fully connected part of the
network.

2. Hybrid Dense Layers

Following the convolutional part, the HQNN- Parallel,
continues with a hybrid dense part, as shown in Fig. 3.
The 32×7×7 feature map produced by the convolutional
part serves as input for the first dense layer, which trans-
forms the feature map from 1568 to m features. The
value of m is determined by the chosen quantum part
and represents the total number of encoding parameters
in the quantum layers.

Each quantum layer is designed to maintain the num-
ber of input and output features, and the output of the
quantum layer is fed into the second classical fully con-
nected layer. This layer performs the final transformation
and maps the m input features to 10 output features,
corresponding to the number of classes into which the

images can be classified. After each classical dense layer,
Batch Normalization and ReLU activation are applied.

It is worth noting that the structure of the HQNN-
Parallel, including the number of layers and the number
of features, can be adjusted to optimize the performance
on a specific task.

3. Structure of Quantum Layer

The quantum component of the proposed HQNN-
Parallel, depicted in the Fig. 3, consists of c parallel quan-
tum layers, each of which is a VQC composed of three
parts: embedding, variational gates, and measurement.
The input data to the quantum layers are m features
from the previous classical fully connected layer, divided
into c parts, with each part being a vector of q values,
x = (φ1, φ2, ..., φq) ∈ Rq. To encode these classical fea-
tures into quantum Hilbert space, we use the “angle em-
bedding” method, which rotates each qubit in the ground
state around the X-axis on the Bloch sphere [38] by an
angle proportional to the corresponding value in the in-
put vector: |ψ〉 = Remb

x (x) |ψ0〉, where |ψ0〉 = |0〉⊗q.
This operation encodes the input vector into quantum
space, and the resulting quantum state represents the in-
put data from the previous classical layer. It is important
to note that m is divisible by q, since the input data vec-
tor is divided into c = m/q parts, with each part serving
as input to a VQC.

The encoding part for each VQC is followed by a
variational part, which consists of two parts: rotations
with trainable parameters and subsequent CNOT oper-
ations [39]. The rotations serve as quantum gates that
transform the encoded input data according to the vari-
ational parameters, while the CNOT operations entan-
gle the qubits in the VQC. The depth of the variational
part, denoted as i, is a hyperparameter that determines
the number of iterations of the rotations and CNOT op-
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FIG. 4: Train and test results for the HQNN-Parallel and the CNN. The HQNN has a 99.21% accuracy on the test data and
outperforms the CNN which has a 98.71% accuracy even though the classical model has 8 times more variational parameters
than the hybrid one.

erations in the VQC. It is important to note that the
variational parameters for each VQC are different in each
of the i repetitions and for each of c quantum circuits.
Thus, the total number of weights in the quantum part
of the HQNN-Parallel is calculated as q · 3i · c.

After performing these operations, measurement in the
Pauli basis matrices is performed, resulting in

v(j) = 〈0|Remb
x (φj)

†
U(θ)

†
YjU(θ)Remb

x (φj) |0〉 , (1)

where Yj is the Pauli-Y matrix for the jth qubit,
Remb

x (φj) and U(θ) are operations, performed by the em-
bedding and trainable parts of the VQC, respectively,
and θ is a vector of trainable parameters. After this op-
eration, we have the vector v ∈ Rq. The outputs of all
the VQCs would be concatenated to form new vector
v̂ ∈ Rm that is the input data for a subsequent classical
fully-connected layer. This layer, being the final layer in
the classification pipeline, produces an output in the form
of probability distribution over the set of classes. In our
case, each input image is associated with one of the ten
possible digits from 0 to 9, and the output of each neuron
represents the probability that the image belongs to that
class. The neuron with the highest output probability is
selected as the predicted class for the image.

4. Training and results

Model train loss test loss test acc param num
CNN 0.0205 0.0449 98.71 372234

HQNN 0.0204 0.0274 99.21 45194

TABLE I: Summary of the results for the HQNN-Parallel and
its classical analogue, CNN.

CNN HQNN
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FIG. 5: Test accuracies for the HQNN-Parallel and its classi-
cal analogue CNN.

As described above, the HQNN-Parallel will be trained
on MNIST dataset A. No preprocessing is applied, so
the entire collection is used for training (60000 images
are in the training set and 10000 are in the test set). In
the context of training the proposed HQNN-Parallel, the
ultimate objective is to minimize the loss function during
the optimization process. The cross-entropy function is
employed as the loss function, given by:

l = −
k∑

c=1

yc log pc, (2)

where pc is the prediction probability, yc is either 0 or
1, determining respectively if the image belongs to the
prediction class, and k is the number of classes.

The parameters of the classical layers are optimized
using the backpropagation algorithm [40], which is auto-
matically implemented in the PyTorch library [41]. The
backpropagation algorithm is used to calculate the gradi-
ents of the loss function with respect to the parameters of
the network, allowing for their optimization via gradient
descent. However, the use of quantum layers in this task



5

+

+

+

Input Encoding
Gates with

trainable parameters Measurement Quanv

FC

Output

Flatten

FIG. 6: Architecture of the HQNN-Quanv. The quanvolutional kernel encodes a chunk of pixels in the input image into the
quantum circuit via angle embedding with Ry gates. Then some rotation gates with trainable parameters and CNOTs are
applied to the qubits, carrying image data. Measuring each wire with σz expectation value yields an output pixel. As we have
4 qubits, the amount of output channels is also 4. All of output channels are flattened into one vector and fed into the fully
connected layer, which gives a predicted digit from 0 to 9.

is more complex than classical methods for computing
gradients. To overcome this challenge, we employ the
PennyLane framework [42], which provides access to a
variety of optimization techniques. We utilize the param-
eter shift rule [43], which is compatible with physical im-
plementations of quantum computing [44]. This method
involves evaluating the gradient of a quantum circuit by
shifting the parameters in the circuit and computing the
corresponding change in the circuit’s output. The result-
ing gradient can then be used to update the circuit’s pa-
rameters and iteratively minimize the loss function. By
using the parameter shift rule, we are able to efficiently
optimize the variational parameters in the quantum lay-
ers of the HQNN, enabling the network to learn complex
patterns in the input data and achieve accurate results.

In the process of solving the problem, we tried various
architectures of quantum layers. The most successful ar-
chitecture for the HQNN-Parallel used a quantum layer
with 5 qubits and 3 repetitions of the strongly entangling
layers. The number of quantum layers equals 4.

The HQNN-Parallel managed to achieve a 99.21% ac-
curacy. In order to compare the performance of the
HQNN with a classical CNN, the convolutional part of
the HQNN was held constant, while the quantum part
was replaced with a classical dense layer containing m
neurons. This modified CNN was then trained on the
same MNIST dataset. A comparison of the training out-
comes is depicted in Fig. 4.

The trainable parameters, as well as the primary train-
ing and testing results, for both the HQNN-Parallel and
the CNN are summarized in Table I and illustrated in
Fig. 5. From these results, it is evident that the most suc-
cessful implementation of the HQNN-Parallel surpasses
the performance of a CNN that possesses approximately
8 times more parameters.

C. Hybrid Quantum Neural Network with
quanvolutional layer, HQNN-Quanv

In this section, we give a detailed description of our
second hybrid quantum approach for solving the problem
of recognizing numbers from the MNIST dataset, based
on the combination of a quanvolutional layer and classi-
cal fully connected layers. The scheme of this network is
presented in Fig. 6. Also, we compare our hybrid model
with its classical analogue CNN, investigate the relation-
ship between quanvolutional and convolutional layers as
well as their dependence on the number of output chan-
nels.

1. Quanvolutional layer

The general architecture of a quanvolutional layer [45]
is shown in Fig. 6. Similar to classical convolutional lay-
ers, the quanvolutional layer comprises a filter of size n×n
pixels that convolves the input image, producing a lower-
resolution output image. However, the quanvolutional
layer is unique in a sense that its filter is implemented us-
ing a quantum circuit consisting of n qubits. The circuit
can be decomposed into three distinct parts: classical-to-
quantum data encoding, variational gates, and a quan-
tum measurement. These parts work together to deter-
mine the filter’s action on the input image.

There are plenty of encoding (embedding) methods to
transfer classical data into quantum states. In this sec-
tion, as in the previous one, we use the “angle embed-
ding” technique. It is achieved by rotating the qubits
from their initial |0〉 value with the Ry(ϕ) unitaries,
where ϕ is determined by the value of the corresponding
pixel. After the classical data is encoded, the quantum
states undergo unitary transformations, defined by the
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FIG. 7: Train and test accuracies for the CNN and HQNN-Quanv models with stride set to 4. The models differ only in the
kernel and the number of output channels. (a) HQNN: Quanvolutional kernel with 1 input channel, 4 output channels; (b)
CNN1: Convolutional kernel with 1 input channel, 1 output channel; (c) CNN4: Convolutional kernel with 1 input channel, 4
output channels. The HQNN-Quanv with an accuracy of 67 ± 1% on test data outperforms the CNN1 which has an accuracy
of 53 ± 2% and the CNN4 which has an accuracy of 66 ± 2%, although the CNN1 has the same number of weights in the filter
as in the hybrid model and CNN4 has 4 times more weights than in the hybrid model.

variational part.
The variational part in the quanvolutional layer usually

consists of arbitrary single-qubit rotations and CNOT
gates, arranged in a particular way determined by the
researcher. The unitaries in the VQC are parameterized
by a set of variational parameters, which are learned via
training the neural network. The ultimate goal of the
model training is to find a measurement basis (via tweak-
ing variational gate parameters) that tells us the most
information about a fragment of a picture confined by
the quantum filter.

Finally, for each wire, the expectation value of an arbi-
trary operator is calculated to obtain the classical output.
As it is a real number, it represents the filter’s output
pixel, while each wire yields a different image channel.
For instance, a quanvolutional filter of size 2 × 2 has
4-qubit circuit, which transforms 1 input image into 4
images of reduced size.

2. Structure of HQNN-Quanv

This subsection details the architecture of the HQNN-
Quanv, which is shown in Fig. 6. At first, a simple angle
embedding of the classical data via Ry(ϕ) single-qubit ro-
tations on each wire is used, where the original pixel value
[0, 1] is scaled to ϕ ∈ [0, π]. Then, we have a variational
circuit part, which consists of 4 single-qubit rotations,
parameterized with trainable weights, as well as three
CNOT gates. At the end of the circuit, we measure the
expectation value 〈σz〉 of the Pauli-Z operator on each
qubit. Each channel is a picture with 4 × 4 pixels. After
that, four output channels are flattened and fed into fully

connected layer, which yields a digit’s probability.

3. Training and results

CNN1 CNN4 HQNN
50

55
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53%
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FIG. 8: Test accuracies for HQNN-Quanv (67 ± 1%), CNN1
(53±2%) and CNN4 (66±2%). The HQNN outperforms the
CNN1, which has the same number of variational parameters.
The HQNN’s accuracy score is equivalent to CNN4’s, which
has 4 times many weights in its filter.

In this section, we describe the training process. In
order to reduce the training time of the HQNN-Quanv,
only 600 images from the MNIST dataset A are used
with 500 of them acting as training data and 100 as test
data. We also use PyTorch’s resize transform with bi-
linear interpolation to downscale images from 28× 28 to
14× 14 pixels. We still use a cross-entropy loss function.



7

While the classical model has only one way of train-
ing weights via backpropagation, the HQNN has several
options, such as the parameter-shift rule, adjoint differ-
entiation [46] or backpropagation (which, of course, is
impossible on a real quantum computer). Adjoint differ-
entiation seems to have the most favorable scaling with
both layers and wires [47], but on this particular circuit
(Fig. 6) backpropagation proved to be quicker.

Considering everything stated above, let us see the re-
sults of the training. We trained two CNN’s with dif-
ferent numbers of output channels and one HQNN for
20 epochs (Fig. 7). The models were intentionally made
simple and had sufficiently few parameters so as to avoid
overfitting on the relatively small dataset. The test ac-
curacy of these models is presented in Fig. 8. For each
epoch, the accuracy is averaged over 10 models with ran-
dom initial weights. The error bars depict one standard
deviation. Hence, for each epoch we have a mean accu-
racy over 10 equivalent models and an error bar for the
standard deviation.

At the end of the training, the HQNN-Quanv had a
test accuracy of 0.67± 0.01, which is close enough to the
CNN4 result of 0.66± 0.02, while CNN1 had 0.53± 0.02.
The HQNN model has only 4 trainable weights in its
quanvolutional kernel, which parameterize rotation gates
in the VQC. CNN1 and CNN4 have 4 and 16 trainable
parameters in their convolutional kernels, respectively.
Therefore, the HQNN’s performance based on the accu-
racy score is equivalent to CNN4’s, which has 4 times
many weights in its filter.

Discussion

In this work, we introduced two hybrid approaches to
image classification. The first approach was a HQNN-
Parallel. This method allowed us to classify handwritten

images of digits from the MNIST dataset with an ac-
curacy of more than 99%. It should be noted that the
number of weights in the quantum model was 8 times
less than in its classical counterpart, which achieved an
accuracy of only 98.71%. Also the successful implementa-
tion of parallel variational quantum circuits in the hybrid
model was demonstrated, which led to such remarkable
results. Our proposed architecture is a unique combina-
tion of classical and quantum layers, which we believe to
be a breakthrough in solving image classification prob-
lems.

The second approach we presented was a HQNN-
Quanv. The quanvolutional layer needs significantly
fewer weights, 4 times less than the classical analogue,
to achieve approximately the same classification accu-
racy (67 ± 1% for the hybrid model versus 66 ± 2% for
the classical one on the test samples when averaged over
10 models), while the classical analogue with the same
number of variational parameters as the hybrid model
achieves an accuracy of 53± 2%.

Further research is needed to explore the full potential
of HQNNs for image classification, including testing on
larger datasets and more complex architectures. Addi-
tionally, the development of more efficient optimization
techniques for training VQCs and the implementation of
larger-scale quantum hardware could lead to even more
significant performance improvements.

In summary, our developments provide two hybrid ap-
proaches to image classification that demonstrate the
power of combining classical and quantum methods. Our
proposed models show improved performance over clas-
sical models with similar architectures while using signif-
icantly fewer parameters. We believe that these results
pave the way for further research in developing hybrid
models that utilize the strengths of both classical and
quantum computing.
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