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Simple Summary: This work successfully employs a novel approach in processing patient and
drug data to predict the drug response for cancer patients. The approach uses a deep quantum
computing circuit as part of a machine learning architecture to simultaneously consider the cell line
and the chemical and predict its effect. The resultant hybrid quantum architecture predicted the
drug response with 15% better effectiveness than its classical counterpart. This result presents a step
towards designing personalized drugs using the abilities of quantum computers.

Abstract: Cancer is one of the leading causes of death worldwide. It is caused by various genetic
mutations, which makes every instance of the disease unique. Since chemotherapy can have extremely
severe side effects, each patient requires a personalized treatment plan. Finding the dosages that
maximize the beneficial effects of the drugs and minimize their adverse side effects is vital. Deep
neural networks automate and improve drug selection. However, they require a lot of data to be
trained on. Therefore, there is a need for machine-learning approaches that require less data. Hybrid
quantum neural networks were shown to provide a potential advantage in problems where training
data availability is limited. We propose a novel hybrid quantum neural network for drug response
prediction based on a combination of convolutional, graph convolutional, and deep quantum neural
layers of 8 qubits with 363 layers. We test our model on the reduced Genomics of Drug Sensitivity in
Cancer dataset and show that the hybrid quantum model outperforms its classical analog by 15% in
predicting IC50 drug effectiveness values. The proposed hybrid quantum machine learning model is
a step towards deep quantum data-efficient algorithms with thousands of quantum gates for solving
problems in personalized medicine, where data collection is a challenge.

Keywords: precision oncology; drug response prediction; hybrid quantum machine learning; quantum
computing in healthcare

1. Introduction

Cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths
in 2020, or nearly one in six deaths [1]. The main cause of death from cancer is widespread
metastases formed due to the chaotic reproduction of corrupted cells. In any case of
cancer, the normal regulation of cell division is disrupted due to a defect in one or more
genes [2]. When the balance between old and new cells gets disrupted, a tumor, consisting
of damaged cells with a propensity for unlimited cell division, develops. At some point,
the presence of these cells begins to prevent the normal functioning of the cells and body
tissues. The tumor becomes malignant or cancerous and spreads to nearby tissues. Usually,
it takes many years for cells to build up enough damage to become cancerous. Sometimes,
a defective gene is inherited from parents and in other cases, the mutation occurs due to
the action of a toxic substance or penetrating radiation on the DNA of a single cell [3]. Each
new case differs from the others due to the diversity of cell mutations, which gives us many
treatment options. The selection of medicines is not easy for cancer, so the approach to
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treating each patient should be personalized [4]. The focus of personalized medicine in
oncology is to focus on the most efficient and efficacious treatment.

Artificial intelligence can help develop personalized medicine by determining di-
agnoses and disease-appropriate therapy faster and less costly since machine learning
algorithms have proven themselves capable of guaranteeing high accuracy of predictions,
learning from patient data collected over years of clinical research [5]. The successes of arti-
ficial intelligence in the past decade have been numerous and fascinating. Machine learning
models have been applied to problems varying in purpose and structure, from complicated
object detection models [6] to impressive stable diffusion models [7]. A specific use case
of machine learning with high potential yield is in the pharmaceutical industry, where
innovations could dramatically affect people’s well-being. In this work, we specifically
focus on the applications of machine learning algorithms to understanding and predicting
the drug response of patients with tumors. It is worth noting that modern machine learning
algorithms, namely deep learning models, solve problems better with lots of data since they
can learn from a large dataset and extract structures and hidden dependencies from them.
However, when it comes to personalized medicine, including predicting drug responses,
collecting data is a challenge [8].

Quantum technologies can greatly help classical machine learning [9–11]. Since the
existing classical models require significant computational resources, this limits their per-
formance. Quantum and quantum-inspired computing models can potentially improve
the training process of existing classical models [12–18], allowing for better target function
prediction accuracy with fewer iterations. Some of these methods provide a polynomial
speedup, critical for large and complex problems where small improvements can make a
big difference. Among these advantages, quantum computing specifically demonstrates
benefits over classical computing across various domains, including chemistry simula-
tions [19,20] and within the medical and healthcare industry [21–25]. For example, in [26],
it was shown that already existing machine learning algorithms, being quantum enhanced,
significantly contribute to medical science and healthcare. The authors have also shown
that the prediction of heart failure as the cause of death can be effectively and more pre-
cisely predicted with the help of quantum machine learning algorithms instead of classical
ones. Among many existing quantum methods, quantum neural networks [27–32] are
one of the most promising. For instance, in [33], the authors use a quantum generative
adversarial neural network (GAN) with a hybrid generator to discover new drug molecules.
The results of the article show that a classical GAN cannot properly learn molecule distri-
bution. However, the proposed QGAN-HG (with only 15 extra quantum gate parameters)
can learn molecular tasks much more effectively. In addition, hybrid quantum neural
networks (HQNNs) can converge towards optimal solutions with fewer iterations and
higher accuracy compared to classical neural networks, particularly when dealing with
small datasets [34]. The previous examples show that HQNNs can have an advantage
over purely classical approaches. They also indicate that quantum neural networks have
the potential to solve pharmacological problems [35], such as the task of predicting the
response of patients to different medications.

In this article, we propose an HQNN to solve the problem of predicting IC50 values.
The dataset we use is called GDSC and contains information on mutations in genomes
that can be matched with different types of cancer, as well as the chemical formula of drug
molecules. We aim to predict how the mutation will respond to the drug, how effective
the drug will be and the value of IC50. Section 3.1 details the dataset. Section 3.2 describes
in detail what preprocessing we perform and the architecture of the network used to
solve the IC50 prediction task, which is a combination of classical and quantum layers.
The classical part of the HQNN consists of several subnets: graph convolutional networks
and convolutional networks for extracting information about drugs and cancer cell lines,
respectively. The quantum layer of 8 qubits that we first introduce in this work is called
the Quantum Depth-Infused Neural Network Layer. This layer consists of an encoding
layer, a Variational Quantum Circuit of 363 layers, and a measurement layer. The result of
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measuring one qubit is a classical bit, the drug response prediction value for a drug/cell line
pair. Section 3.3 describes the training process and compares the HQNN and a classical one
where the quantum layer is replaced by classical fully connected (FC) layers. The hybrid
quantum approach showed a 15% better result in predicting the IC50 values compared to
its classical counterpart.

2. Machine Learning for Drug Response Prediction

In this section, we showcase existing Machine Learning approaches that led up to this
paper. All the models mentioned below had experiments set using the Genomics of Drug
Sensitivity in Cancer (GDSC) [36] dataset, including the drug-specific description, cancer
cells, and calculated IC50 value.

The IC50 metric is an important measure of drug response used to evaluate the ef-
fectiveness of therapy against different types of cancer. It represents the half-maximal
inhibitory concentration. The IC50 of a drug can be determined by constructing a dose-
response curve while examining the effect of different drug concentrations on the disease
response. The larger the IC50 value is, the higher the drug concentration needed to destroy
cells by 50%. In other words, the drug is less effective, and the response of the disease to
this medicine is low. Similarly, the smaller the IC50 value is, the lower the concentration of
the drug required to suppress cells by 50% and the more effective the drug is.

Among the first approaches to solving the problem of predicting drugs using sensi-
tivity to cancer cells was the one implemented in 2012 [37]. Using the elastic net model, it
was possible to identify complex biomarkers and match them with sensitive cancer cells.
The elastic net model uses coordinate descent to predict with a linear model and uses
the determination coefficient to set the parameters for the estimator. Elastic Net adopted
genomic features to reproduce the tumor environment and thus considered only part of the
features, which was rather small to reach high accuracy and universality concerning the
larger set of drugs and diseases.

Random Forest is a classification model that applies a sequence of queries to a set of
data samples to linearly restrict and split it into classes [38]. It was shown that the model
considered cancer cells and drug features performed well as multi-drugs yet left space for
increasing the model’s robustness by considering more input features of the cell lines.

Ridge regression, in a similar way to linear regression, follows a path of coordinate
descent. It then changes the cost function in a way so that it could regain the regression
model’s stability and avoid overfitting. A model with an additional quadratic term in its
loss function [39] and that consisted of baseline gene expression only managed to perform
better than several existing biomarkers, though the model is believed to be improved by
being more specific in expressing other levels of gene structure.

When a Convolutional Neural Network gets a picture as an input, it assigns weights
to a filter and does convolution to an existing layer of pixels. A filter or kernel extracts the
dominating features and the pooling layer is implemented to reduce the object’s volume.
After going through the series of convolutional and pooling layers, the resulting features are
processed by the FC layers and then distributed into classes. The proposed approach [40]
employed an ensemble of five models that gave an average predicted IC50 value for cancer
cell lines (instead of cancer types). Along with genomic fingerprints, the models used
selected mutation positions.

Since the first deep learning models emerged, their application in personalized
medicine increased with their development. In 2019, a deep learning multi-layered model
was proposed, starting with an input layer, then nonlinearity layers and a classification
layer at the end [41]. The pathways to each drug were analyzed to increase the efficiency
of the neural net performance. The accuracy of the predictions increases as the training
datasets become larger, so it is believed that it is possible to improve the model with
larger datasets.

Another deep learning-based model applies the method of late integration of mutation,
aberration number and omics-data, DL MOLI [42]. The model preprocesses the data to
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send the result through three encoder neural sub-networks to extract features. Then, the
model connects the features into one representation of the given tumor sample and follows
the classifier structure with the cost function considering triplet loss to separate responder
samples from non-responders.

Visual neural networks applied to the given cluster of problems represent human
cancer cell models. In this model, considering both drug and genotype features, their
embedding was performed in parallel [43]. The drug branch was built as an artificial
network of three hidden FC layers, where each drug was described as a fingerprint at
the input. Genotypes were binary encoded and passed through the network, which was
constructed as cell subsystems, and each was assigned its number of neurons.

In the presented variety of approaches to solving the problem of personalized medicine,
each classical neural network tried to integrate data into the model and, in its way, tried
to reproduce the conditions of real life as best as possible. However, until now, previous
approaches not only did not take into account the possible factors influencing the study to
the maximum, but also an architecture capable of taking into account the influence of all
these factors could not be built, leaving alone the problem of small datasets and overfitting.
Consequently, the result was given for some special cases.

In this article, we present a method for solving the problem of predicting the IC50
values using an HQNN, as seen in Figure 1. To date, we have not found studies that would
solve the problem of predicting the IC50 values using quantum or HQNNs. Our approach
solves the drug response prediction problem more accurately than its classical counterpart
on a small dataset. In the next section, the hybrid quantum method and results will be
described in detail.
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Figure 1. In each case, the drug response is calculated for a pair of chemical formulas of the
medication/cell line. The drug response is evaluated using the IC50 value. The machine learning
algorithm is a powerful drug predicting tool as it saves effort and time that could have been spent on
tests in the laboratory and waiting for the results of experimental therapy courses to check whether
there are improvements in the patient’s condition.

3. Results

This paper explores the use of HQNNs in drug response prediction. The proposed
model is a combination of graph convolutional, convolutional, and quantum layers. We
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tested our model on a small part of the dataset using the GDSC database (Section 3.1).
HQNNs can provide higher learning efficiency, requiring fewer iterations, and can show
lower prediction error in the IC50 values by 15% compared to the classical analog, as will
be shown below.

3.1. Description of Dataset

The dataset known as the GDSC [36] is considered to be the largest database keep-
ing information about cancer cell line sensitivity on prescribed anti-cancer drugs and
genetic correlations.

The GDSC database consists of cell line drug sensitivity data generated from ongoing
high-throughput screening, genomic datasets for cell lines and the analysis of genomic
features, or systematic integration of large-scale genomic and drug sensitivity datasets.
For example, see Figure 1. The compounds selected for the screening of cancer are anti-
cancer therapeutics. They comprise approved drugs used in the clinic, drugs undergoing
clinical development, drugs in clinical trials, and tool compounds in early-phase develop-
ment. They cover a wide range of targets and processes implicated in cancer biology. Cell
line drug sensitivity is measured using fluorescence-based cell viability assays following
72 h of drug treatment.

Values from the dataset include the IC50 value, the slope of the dose-response curve,
and the area under the curve for each experiment. We used IC50 as the primary because
it is a widely accepted measure of drug response prediction tasks. However, we believe
that our HQNN model can be adapted to predict AUC values as well. While we have
not specifically tested our model using the AUC metric, the general architecture of our
HQNN can be applied to any output, making it a versatile tool for drug response prediction,
although some modifications to the loss function may be necessary. It is worth noticing
that mRNA expression profiles are also important characteristics of cell lines and can be
used to represent them. The purpose of this particular study, however, was to find out how
well the model can predict IC50 values for cell lines. In this study, we used version 6.0 of
the dataset.

3.2. Hybrid Quantum Neural Network Architecture

The principle of operation of the neural network, as shown in Figure 1, is the distribu-
tion of drugs, represented in the form of a chemical formula in the dataset, and cancer cells
encoded in a binary chain over two parallel working neural networks and all the results
placed in a quantum neural network layer for analysis and prediction of the IC50 value.

In this section, we present a solution to the problem of IC50 prediction and describe
in detail the network architecture used. The architecture of an HQNN is illustrated in
Figure 2 and consists of three sub-networks: a neural network for cell line representations
(Section 3.2.1), a neural network for drug representations (Section 3.2.2), and a quantum
neural network (Section 3.2.3). It is worth noting that we were inspired to use such a
classical part of our HQNN [44].

3.2.1. Cell Line Representation

In biology, a cell line is a population of human cells that normally would not multiply
indefinitely; however, because of the gene mutation, these cells avoided cellular ageing and
continue to divide infinitely. Thus, in our studies, the cell line represents the tumor itself as
a binary vector, where 1 indicates the presence of genomic mutation and 0 is its absence,
as shown in Figure 2. A one-dimensional convolutional layer was used to encode the cell
line’s genomic features, represented as one-hot encoding, namely a 735-dimensional binary
vector. Then, the feature map was passed through the Max Pooling layer to reduce the
spatial volume of the map. After three repetitions of the convolutional layers, the final FC
layer flattens the output into a vector of 128 dimensions.
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Figure 2. HQNN architecture. The cell line is fed to the network as a vector with 735 elements to a
one-dimensional convolutional network. In parallel, the chemical composition of the drug is passed
to a graph convolutional neural network. Each of these two is then processed in parallel according
to the graphic above, to reach an FC layer of 128 neurons. Then, they are combined into a single
layer of 256 (2 × 128) neurons. Classical information from every 8 classical neurons of 256 neurons
is passed to the Quantum Depth-Infused Neural Network Layer. The information is encoded into
rotation angles {φj}256

j=1 around the Z-axis into each of the 8 qubits of the 32 quantum circuits forming

a quantum layer. The total number of variational parameters {θh
k}

8
k=1 is 1320. The measurement

result of the first qubit predicts the IC50 value.

3.2.2. Drug Representation

The drug is represented as a graph in the format of SMILES, using the PubChem
library [36]. In this format, the drug is written in a line. Each node of the graph con-
tains information describing its graphical and chemical representation, including the atom
type, the chemical bonds, the branching of the molecule, its configuration, and its iso-
topes. The atom type is encoded with the standard abbreviation of the chemical elements,
the bonds are represented with special symbols, branches are described with parentheses,
and isotopes are specified with a number equal to the integer isotopic mass preceding
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the atomic symbol. Then, the drug data is transformed into a molecular graph using
RDKit software [45]. Each of the 223 drugs has its unique chemical structure, which can
be naturally represented as a graph where the vertices and edges denote chemical atoms
and bonds, respectively. Thus, each graph obtained from one line of SMILES contains
information about one specific drug and has a number of vertices equal to the number of
atoms in the molecule of this drug, and the edges in the graph are responsible for the bonds
between atoms in the molecule. Representing drugs in graphs is more suitable than in
strings since it conserves the nature of the chemical structures of drugs. Since drugs were
represented in graphs, a Graph Convolutional Network [46] was used to learn its features.

A Graph Convolutional Layer was taken with 2 matrices as an input: a feature
matrix X ∈ RN×F and an adjacency matrix A ∈ RN×N , which displays the connections
between atoms, where N is the number of atoms in a molecule, F is the atomic features of
a 78-dimensional binary feature vector, and then a node-level output with C features for
each node is produced.

In the used sub-network there were three graph convolutional layers. After each, an
activation function ReLU [47] was used. After the last graph convolutional layer, a global
max pooling was applied. The obtained output was turned into a 128-dimensional vector
by the sequence of two FC layers with sizes 312, 1024, and 128, respectively.

3.2.3. Quantum Neural Network

The resulting combination of cell and drug data, constituting a vector of 256 nodes,
was transformed into a quantum layer of the HQNN, composed of three parts: embedding,
variational layers, and measurement. In this work, we employ a large and deep quantum
neural network. This size arises from a need to propagate uncompressed data (256 neurons)
through the classical preparation networks to the quantum layer. Commonly used quantum
neural network architectures normally encode each feature on a separate qubit [34,48,49],
but for 256 neurons, this is not accessible to today’s quantum engineers for two main
reasons: (1) this qubit count is far beyond the fault-tolerant readily accessible quantum
simulator or hardware, and (2) the noise-free barren plateau problem [29] affects this region
with high potency, rendering the model impossible to train. Instead, we take inspiration
from the data re-uploading method introduced in [50] and developed further in [51] to
create a lattice of features: we use 8 qubits, and create a lattice of length 32 (blue square in
Figure 1).

Each of the 256 features leading up to the quantum layer is encoded on this lattice in
such a way that the first 8 features {φi}8

i=1 are encoded on the first lattice length, features
9–16 {φi}16

i=9 on the second length, and so on. To encode these classical features into the
quantum Hilbert space, we use the “angle embedding” method, which rotates each qubit
in the ground state around the Z-axis on the Bloch sphere [52] by an angle proportional to
the corresponding value in the input vector. This operation encodes the input vector into
the quantum space, and the resulting quantum state represents the input data from the
previous classical layer. The names, descriptions, matrices, and representations of all used
quantum gates are presented in Table 1.

To ensure the highest Fourier accessibility [51] to the feature encoding, entangling
variational layers (purple square) are placed between each layer of feature encoding. Each
variational layer consists of two parts: rotations with trainable parameters, and control
gates, which are typically subsequent CNOT operations [53]. The rotations serve as quan-
tum gates that transform the encoded input data according to the variational parameters,
while the CNOT operations are used to entangle the qubits in the quantum layer, allowing
for the creation of quantum superposition. The number of variational layers in each lattice
length, in each blue square, equals five, but it is important to note that the variational
parameters for each variational layer are different in each of the five repetitions. Moreover,
we apply five variational layers (green square) for greater representativeness of the model
before all encoding layers. Thus, the total number of weights in the quantum part of the
HQNN is calculated as 8× 5 + 8× 5× 32 and equals 1320.
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Table 1. Quantum logic gates.

Action Elements Name Elements Description Matrix Representation Elements Notation

1 Rotation operator X X(θ) = exp (−iσxθ/2)
[

cos (θ/2) −i sin (θ/2)
−i sin (θ/2) cos (θ/2)

]
X

2 Rotation operator Y Y(θ) = exp
(
−iσyθ/2

) [
cos (θ/2) − sin (θ/2)
sin (θ/2) cos (θ/2)

]
Y

3 Rotation operator Z Z(θ) = exp (−iσzθ/2)
[

exp (−iθ/2) 0
0 exp (iθ/2)

]
Z

4 Controlled NOT gate CNOT = exp
(
i π

4 (I − σz1)(I − σx2)
) 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 •

In the measurement part, all qubits but the first make a CNOT operation on the
first qubit so that the Z-measurement is propagated to all qubits. The Z-measurement
is then augmented using a multiplicative and an additive trainable parameter to fit the
requirements of the IC50 value. Thus, the output of the HQNN is the prediction of the IC50
value of the particular chemical/cell line pair.

It is noteworthy that a quantum circuit of this depth would be far too difficult a
challenge for today’s noisy quantum devices and it is likely that this architecture in its
current form will stay on a quantum simulator for the foreseeable future. However, it
is possible to create mathematically identical circuits with much shallower depth but
higher qubit counts. This means that by increasing the number of qubits, we get the same
model but much shallower and thus with a higher potential for being run on a noisy
quantum device.

The HQNN was compared with its classical counterpart, the architecture of which
differs only in the last part: instead of a quantum layer, the classical network has two FC
layers, the numbers of neurons which are eight and one. In terms of the number of param-
eters, these two models also differ only in the last part: the HQNN has 1320 variational
parameters, while the classical model has 2056.

3.3. Training and Results

In our experiment, the HQNN was evaluated on drug/cell line pairs provided by the
GDSC database with known IC50 values. The used data consisted of 223 × 948 = 172,114
pairs of drugs and cell lines. The corresponding received response values were normalized
in the range of (0, 1). We used a logistic-like function: for each IC50 value y, we applied
the following formula: norm(y) = 1/(1 + y0.1), where y > 0. The observed/expected IC50
value, which has to be a positive number greater than zero [38]. The preprocessed data
(172,114 pairs) were shuffled and distributed once into training (80%) and testing (20%)
sets. Since it is difficult to collect data in tasks related to the pharmaceutical industry and
personal medicine, and HQNNs performed well in solving problems on a small dataset,
the dataset was reduced to 5000 samples for training and 1000 for testing procedure.
We chose this split ratio to ensure enough data to train our model while still reserving
a reasonable amount for testing. The split was performed randomly. To increase the
representativeness of the dataset and prevent accidental skewing, the order of samples in
the training set is shuffled at each epoch, while in the testing set it remains the same. As an
optimizer, Adam [54] was used with a learning rate equal to 1.8× 10−3.

In our study, the hyperparameters were determined through a combination of trial
and error and a grid search approach. For the number of qubits, we experimented with
different numbers of qubits for each encoding length until we found a balance between
model accuracy and computational resources. For the learning rate, we tried different
values within a reasonable range to find the optimal value that minimized the loss function
during training. Other hyperparameters, such as the number of variational layers and the
type of optimizer, were also optimized using a grid search approach. We did not use a
separate dataset in our work for the hyperparameter optimization method, we trained our
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models on the training set and then evaluated them on the testing set. Finally, we selected
the hyperparameters that gave the best performance on the testing set.

To evaluate the effectiveness of the model, we used the mean square error (MSE)
metric, which measures the discrepancy between the predicted IC50 value (Yi) and the
corresponding ground-truth value (Oi) for each drug/cell line pair (i) in our dataset. The
MSE is defined as follows:

MSE =
1
N

N

∑
i=1

(Oi −Yi)
2

where N denotes the number of drug/cell line pairs in the dataset. The successful perfor-
mance of the model is determined by small values of the MSE—the lower, the better.

All machine learning simulations were carried out in the QMware cloud [34,55],
on which the classical part was implemented with the PyTorch library [56] and the quantum
part was implemented with the PennyLane framework. PennyLane offers a variety of qubit
devices. We used the lightning.qubit device, which implements a high-performance C++
backend. To obtain the gradients of the loss function with respect to each of the parameters,
for the classical part of our HQNN, the standard back propagation algorithm [57] was
used and for the quantum part, the adjoint method [58,59] was used. The results of the
simulations are shown in Figure 3. We observe that the MSE loss function of the HQNN
decreases monotonically during training, while the classical model exhibits a volatile
behavior. This indicates that the HQNN is more stable and efficient in minimizing the
loss function.
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Figure 3. Dependence of the MSE loss on the number of epochs. The HQNN outperforms the classical
counterpart by 15%.

This is due to the inherent properties of quantum computing, such as superposition
and entanglement, which can enhance the ability of the model to learn complex relation-
ships and patterns in the data. These properties can also help avoid overfitting and improve
generalization, leading to better performance on unseen data. Therefore, by utilizing quan-
tum computing in machine learning, we can potentially achieve more robust and reliable
models that can better understand complex systems, such as drug response prediction.

Thus, the network with the deep quantum layer demonstrates a better result than the
classical one, and the improvement in the loss of the HQNN is more than 15% compared to
the classical model with the same architecture.

We also conducted an experiment by training the hybrid and classical models with the
same hyperparameters on a different amount of training data: on 50, 200, and 5000 numbers
of samples. The results are presented in Figure 4. The Y-axis shows the difference in the
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MSE loss on the testing set, which consisted of 10, 50, and 1000 data points, respectively,
to maintain the training/testing ratio, between the hybrid and classical models. As one
can see from the graph, the fewer training data, the greater the difference in loss, and the
better the quantum model is compared to the classical one. This suggests that HQNNs are
particularly useful for tasks such as personalized medicine, where obtaining large amounts
of data may be challenging, and where classical neural networks may encounter issues
such as overfitting or underfitting. Our findings provide evidence that our method can be
applied to datasets with small sample sizes and still achieve good performance.

50 200 5000
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Figure 4. Dependence of the difference between MSE losses of the classical and hybrid model on
training sizes. The fewer training data, the greater the difference in loss, and the better the quantum
model is compared to the classical one.

4. Conclusions

This study presents a novel HQNN consisting of a deep quantum circuit with 1320 train-
able gates for anticancer drug response prediction. In our model, drugs were represented
as molecular graphs, while cell lines were represented as binary vectors. To learn the
features of drugs and cell lines, graph convolutional and convolutional layers with FC
layers were used. Then, a deep quantum neural network predicted the response values for
the drug/cell line pairs. The deep quantum neural network is a newly designed layer called
the Quantum Depth-Infused Neural Network Layer. We were able to encode information
from 256 neurons into just 8 qubits. As far as we know, this is the first work in which
HQNNs are used to predict the value of IC50.

In addition, we have demonstrated that our HQNN is 15% better than its classical
counterpart, in which the quantum layer is replaced by an FC classical layer with eight
neurons. We tested our models on a reduced dataset presented by GDSC consisting of
5000 and 1000 training and test drugs/cell line pairs, respectively. Moreover, we have
shown that the quantum model outperforms the classical model more, especially with little
training data.

It is important to note that the small sample problem in drug response prediction is
not only about the number of samples but also the complexity and heterogeneity of the
dataset. The GDSC dataset contains more than 1000 different cancer cell lines, each with
its own unique genetic mutations and characteristics, and hundreds of different drugs.
The number of possible drug-cell line combinations is therefore much larger than the
number of samples we used in this study. In this context, our dataset can be considered
relatively small. Furthermore, it is worth noting that the number of available samples
for some drug-cell line combinations in the GDSC dataset is still limited. For example,
some combinations may only have a few data points available, making it challenging to
accurately predict drug response. Therefore, our method is still relevant in addressing the
small sample problem in drug response prediction, even though we used a dataset that is
relatively large compared to some other studies. Additionally, our method has the potential
to uncover important molecular mechanisms underlying drug response, which is crucial
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for the development of personalized medicine where data collection is a difficult task. In
addition, in anticancer drug design and understanding cancer biology, identifying cell lines
that are important for drug sensitivity or resistance.

With the ability to predict the IC50 values of a chemical/cell line pair, researchers can
more easily identify potential candidates for drug development, prioritize experiments,
and reduce the need for costly and time-consuming laboratory experiments. Moreover,
the use of a HQNN allows for the exploration of complex relationships between features
that may not be easily identifiable using classical methods, potentially leading to new
insights and understandings of cancer biology, and also to the repurposing of existing
drugs for cancer treatment.

In future work, we are planning to calculate a list of the IC50 values for certain
drug/cell line pairs using the models produced in this work, as well as increase the
complexity and performance of the HQNN. It would also be valuable to test this architecture
on other cancer-related datasets as we would like to assess the applicability of the HQNN
to the wider healthcare context.
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