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Quantum computing promises to tackle tech-
nological and industrial problems insurmountable
for classical computers. However, today’s quan-
tum computers still have limited demonstrable
functionality, and it is expected that scaling up
to millions of qubits is required for them to live
up to this touted promise. The feasible route in
achieving practical quantum advantage goals is to
implement a hybrid operational mode that real-
izes the cohesion of quantum and classical com-
puters. Here we present a hybrid quantum cloud
based on a memory-centric and heterogeneous
multiprocessing architecture, integrated into a
high-performance computing data center grade
environment. We demonstrate that utilizing the
quantum cloud, our hybrid quantum algorithms
including Quantum Encoding (QuEnc), Hybrid
Quantum Neural Networks and Tensor Networks
enable advantages in optimization, machine learn-
ing, and simulation fields. We show the advantage
of hybrid algorithms compared to standard clas-
sical algorithms in both the computational speed
and quality of the solution. The achieved advance
in hybrid quantum hardware and software makes
quantum computing useful in practice today.

I. INTRODUCTION

Explosive development of quantum technologies im-
poses a challenge to correctly identify the approach most
effective in exploiting the potential of quantum comput-
ing and successful in addressing the required industry-
relevant problems in full-scale. The present state of
the quantum art is attested as Noisy Intermediate-Scale
Quantum (NISQ) technology, in which quantum com-
puters comprising 50-100 qubits are on their way of sur-
passing the capabilities of today’s classical digital com-
puters but in which quantum device decoherence, mea-
surement imperfections, control errors and architectural
limitations retard the further size growth of quantum cir-
cuits that can be reliably implemented [1, 2]. The most
promising way to achieve the desirable development of
computing technology on the practical applications level,
is to hybridize the powers of the available NISQ devices
with state-of-the-art classical high-performance comput-
ing capabilities [3–6]. This hybridization is needed not

only for combining the powers of the different types of
processors, quantum processing units (QPUs), central
processing units (CPUs) and graphical processing units
(GPUs), but also for a classical control, optimization,
calibration, and error-correction of NISQ devices. Clas-
sical devices are important for verification of quantum
devices [7, 8], and for providing logical quantum de-
vices [9, 10]. The task is thus to integrate all compo-
nents into a single platform, so that classical and quan-
tum computing units exchange information locally and
allow for efficient high-speed device-to-device and device-
to-memory connections.

Here we develop a Hybrid Quantum High-Performance
Computing (HQC) cloud, with an in-memory computing
model and complete software stack including hardware,
operating system, middleware, and application program-
ming interfaces (API), that fuses together the best of
today’s classical computing elements and the emerging
quantum components into a hybrid model for productive
use. Our hybrid quantum cloud, QMware, that we intro-
duce here, provides a private cloud-based platform and
containerized environment in a memory-centric compute
architecture where research partners and industrial orga-
nizations can build and deploy their own hybrid quantum
applications at scale [11]. Our state-of-the-art GAIA-X-
compliant data centers combine high-performance classi-
cal infrastructure, simulated QPUs [12–15] and advanced
machine learning tools for efficient production grade de-
ployment of hybrid quantum-classical algorithms. There
are three key innovations of the QMware cloud, which are
shown schematically in Fig. 1. First, a memory-centric
compute architecture, instead of the von Neumann ar-
chitecture [16, 17], is used. It supports heterogeneous
processing with QPUs, CPUs and GPUs as well as hy-
brid quantum compute, which includes all processes and
procedures involved in a hybrid quantum computation
of a hybrid quantum application in a container. Second,
a unified information theoretical model for both, classi-
cal and quantum information, represented as the mem-
ory patterns in our central main memory and integrated
into our operating system. This model allows for efficient
QPU simulation through implementing a hardware type
agnostic intermediate representation of the quantum cir-
cuits (see Fig. 1, and e.g., Ref. [18]). The Intermediate
Representation here reflects a generic model of the quan-
tum circuits as part of the hybrid quantum algorithms.
Our HPC and Quantum Simulation workloads are pow-
ered by Intel Xeon Platinum CPUs and NVIDIA A100
GPUs. Third, a unified in memory communication pro-
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tocol, which makes sure that the right hardware accesses
the relevant information pattern.
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FIG. 1. QMware hybrid quantum cloud: architecture dia-
gram. A customer accesses hardware resources via one of the
private containers.

Here we focus on the hybrid algorithms, demonstrat-
ing how the combination of classical and simulated quan-
tum resources realizes hybrid-exclusive advantages in op-
timization, machine learning, and simulation. In opti-
mization, we demonstrate that our hybrid solution to
the MaxCut problem showcases a performance advantage
over the commercial high-performance CPLEX solver. In
machine learning, we show the application-specific ad-
vantage of the hybrid quantum neural networks over their
classical counterparts by studying two standard problems
in the classification and regression domains. In simula-
tion, we exhibit that the quantum-inspired tensor net-
work differential equations’ solution is more scalable than
a classical conjugate gradient solution.

The paper is structured as follows. First, we introduce
the hybrid quantum cloud and describe its capabilities to
run hybrid quantum algorithms. Next, we demonstrate
applications of hybrid quantum algorithms to optimiza-
tion, machine learning, and simulation. In the summary,
we discuss the impact of our developments.

II. HYBRID QUANTUM COMPUTING

To build optimal full-scale hybrid solutions, we fo-
cus on implementing quantum algorithms in a high-

performance classical environment, while evaluating the
scaling on NISQ devices. While the speed-up of many
quantum algorithms can be demonstrated analytically,
e.g., Shor’s algorithm [19], most algorithm developing ini-
tiatives benefit considerably from numerical experiments
implemented within sufficiently powerful environments.
For instance, variational algorithms for quantum chem-
istry, optimization, and machine learning that are partic-
ularly adapted for NISQ devices [20] also involve a clas-
sical heuristic optimization routine that must be anal-
ysed numerically. The key ingredients of the emerging
hybridized quantum computing directions are as follows:

1. Combining optimally quantum and classical hard-
ware resources for algorithm execution, within the
given limitations of both units.

2. Implementing quantum solutions with classical im-
provements to eliminate bottlenecks, and using
classical algorithms for optimizing quantum sub-
routines.

3. Synchronizing the processing and storage of the
quantum and classical information across the stack

Incorporating these directions addresses scalability, la-
tency and memory-related challenges limiting overall per-
formance today. The QMware cloud drives progress in
these three areas and provides a system for disruptive ap-
plication development around the most demanding com-
putational problems in optimization, machine learning,
and simulation, see Fig. 2.

A. Hybrid Quantum Architecture

Quantum circuits are hard to simulate classically as
the time and memory needed for simulations and com-
putational cost scales exponentially with the number of
qubits [1]. Notably, however, there are classes of algo-
rithms that scale more favourably, although still expo-
nentially, for specific sets of quantum circuits, e.g., ten-
sor networks [21]. Reports on several high-performance
quantum circuit simulators have been published, includ-
ing full state vector codes built for the CPUs [12, 22],
and/or GPUs, and those that use a mix of algorithm
types [23].

Our hybrid computing hardware is based on a unique
memory-centric architecture, shown in Fig. 2, whereby
the same main memory is accessible by all the different
processing units harnessed for problem-solving, includ-
ing CPUs, GPUs, QPUs, and the like, in a similar man-
ner and to its whole extent. This uniform computing
model tackles the challenges around effectively storing
and processing both quantum and classical information
in one system through implementing a memory bus sys-
tem for synchronisation between the physical processing
units and the main memory. The in-memory processor
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FIG. 2. QMware hybrid quantum cloud: accessing applica-
tions with quantum algorithms capabilities. Multiprocessing
and in-memory compute allows for application-specific prac-
tical advantage. The integrated simulated QPUs are able to
simulate up to 40 fault-tolerant qubit circuits. Native QPUs
of different topologies and emulations of them are supported
by our SDK, but are currently not yet integrated in the hybrid
cloud.

virtualization enables the realization of simulators, emu-
lators and physical hardware level integrations with na-
tive QPUs of all topologies from across the ecosystem in
a highly efficient manner. The logical unification through
an intermediate representation prevents time consum-
ing copying of information in between process cycles.
Through a system that unifies hybrid multi-processing
compute, QMware enables the processor units to inde-
pendently access the same central main memory. It also
facilitates the scalable heterogeneous processing which is
highly desirable for specific applications, e.g., for image
classification using GPUs and QPUs through realizing
the Compute Express Link (CXL) between processing
units to scale performance.

While many hybrid algorithms feature a continuous
loop of classical-quantum-classical interactions as the
most time-consuming subroutine, our approach opti-
mizes the quantum-classical interface to provide speed-
ups through a hybrid quantum computing pipeline. Fur-

thermore, due to the algorithmic universality and large
shared memory capabilities (12 TB per node, next ver-
sion 32 TB), any quantum circuit built on our hybrid
quantum cloud with virtualized qubits can also be run
on upcoming native QPUs from across the ecosystem.
The other way around, the QMware cloud is capable to
import and run any outside developed algorithm. Ad-
ditionally, the intermediate representation is downwards
compatible for future hardware. This gives end users
the ability to build modular hybrid quantum algorithms
today while maintaining hardware flexibility in the long
term.

B. Introducing Quantum into Classical

While many use-cases can be tackled using advanced
quantum inspired computing, the exponential growth of
the required classical resources limits the size of the sim-
ulated quantum computational space.

In the case of optimization problems, a quantum an-
nealing [24] or a quantum approximate optimization al-
gorithm (QAOA) [25], executed on a 40-qubit device, can
handle a problem with 40 binary variables. Partitioning
larger problems to be handled by these approaches sig-
nificantly compromises solution quality. However, using
more sophisticated encoding in the hybrid quantum algo-
rithm allows for tackling problems with many thousands
of variables, without compromising the solution quality.

Further extension of the problem complexity requires
the native QPUs of the size and quality that are ex-
pected to appear on the market in forthcoming years.
Many machine learning models benefit from the expo-
nentially larger parameter space while keeping learning
simple, e.g., kernel methods [26]. Enlarging the model
using native quantum devices allows for more complex
data analysis [27].

Quantum advantage has been demonstrated on QPUs
programmed to execute random instructions that were
used to mimic a quantum algorithm [28]. In the previous
case, the QPU took 200 seconds to sample a quantum
circuit a million times, while the execution time of the
same task on a classical supercomputer is several orders
of magnitude higher. Recently, a similar experiment was
repeated utilizing more qubits and more complex circuits
[29, 30]. Besides, Ref. 31 has implemented a quantum al-
gorithm for a linear system solution that can be used for
demonstrating an advantage of quantum phase estima-
tion procedure, which we also use in a quantum sensing
protocol [32]. Such a dramatic speed-up certainly counts
as experimental evidence that for specific use cases hybrid
quantum computers will surpass purely classical comput-
ers that reigned in the past.
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III. APPLICATION-SPECIFIC HYBRID
QUANTUM ADVANTAGE

Here, we address three industry-valuable domains,
namely optimization, machine learning and simulation
that posit heavy challenges and demonstrate how hybrid
quantum computing can improve solution performance.
These challenges and limitations are faced by classical
algorithms and existing hardware across these three do-
mains. For instance, the inability to find the global min-
ima in feasible time for optimization challenges [33], the
large energy intensiveness when training deep learning
models [34] and the inability to simulate large scale com-
plex systems [35].

A. Optimization

The problem of multiparameter optimization in the
presence of multiple constraints arises in various subrou-
tines of large-scale business management, such as an op-
timal resource allocation for improving efficiency, reduc-
ing risks and costs, and increasing profit. Many discrete
optimization problems are NP-hard [36], rendering the
creation of efficient methods for finding the optimal so-
lution impossible on large enough scales. The computa-
tional challenges that appear when solving such problems
include, among others, exponential increases in computa-
tional cost with increasing dimensionality and the num-
ber of local minima [33].

One of the most advanced classical software ap-
proaches to performing large-scale discrete optimizations
are combinations of Simplex, the interior point-based
methods, Branch and Bound algorithms, mixed-integer
linear and quadratic programming, and mixed-integer
constrained programming [37, 38]. These methods are
implemented in commercially available solvers, such as
CPLEX by IBM [39] or Gurobi Optimizer by Gurobi [40].
Many important problems have been solved by utilizing
these solvers, but their large-scale performance is limited
due to the likely exponential increase in optimization
complexity [41]. Even without the exponential increase
in complexity, the proper tuning of optimizers becomes
unfeasible on a larger scale since the landscape of the
cost function becomes much too complex. The latter
is instrumental in solving real-life problems, such as
applications in industry, where time is often a constraint
and compute resources are scarce. Quantum algorithms
can help in finding solutions in a faster and more
accurate manner [25, 42–44].

Indeed, in the quantum computing community, dis-
crete optimization is considered to be one of the lead-
ing candidates to demonstrate a quantum advantage in
NISQ devices. Quantum annealers, in contrast to uni-
versal quantum computers, are special-purpose hardware
developed explicitly for solving optimization problems

and sampling tasks [24]. De facto, quantum annealing
is an algorithm for solving Ising spin glasses [45] inspired
by classical simulated annealing, and quantum annealing
systems implement this algorithm in quantum hardware.
Such machines implement a noisy version of the Quantum
Adiabatic Algorithm, the mathematical equivalent used
for formulating the problem mostly being the Quadratic
Unconstrained Binary Optimization (QUBO). Solving a
QUBO minimizes a polynomial function of binary vari-
ables, with a degree at most two. The QUBO model
is an NP-hard discrete optimization problem that lies
in a cost function minimization min(C) = min~x(~xTQ~x),
where xi ∈ {0, 1} is the component of a vector ~x of nc

binary variables and Q is a real and upper triangular ma-
trix. Many known binary-constrained problems can be
reduced to QUBO using penalties in the cost function.
Remarkably, it was shown in Ref. [46] that many NP-
complete and NP-hard problems, including all of Karp’s
21 NP-complete problems, can be reduced to QUBO in
a polynomial time.

Among the wide range of the QUBO problems, the
MaxCut on an arbitrary graph [47] is often used to anal-
yse the performance of quantum algorithms. The Max-
Cut problem is a search of the partition of the graph’s
nodes into two complementary sets, such that the sum
of the weighted edges between these two sets is as large
as possible. The MaxCut problem is related to logistics
and planning, such as machine scheduling, traffic message
management, computer-aided design, image recognition,
and unsupervised machine learning problems, such as
clustering and various financial optimizations. The Max-
Cut problem can be formulated as the QUBO problem,
which lies in a minimization of the following quadratic
function:

E = −
nc∑

i,j=1

dij(xi − xj)
2, (1)

where dij is the weight of the edge between i-th and j-
th nodes in the studied graph. The solution is a binary
string ~x of nodes’ indicators that show the correspon-
dence to one of two sets. The elements of the QUBO ma-
trix, in turn, are Qij = 2dij(i > j) and Qii = −

∑
j dij .

Inspired by quantum annealing, the optical Coherent
Ising Machine (CIM) was developed to find solutions
using light pulses in a hybrid electro-optical loop [48].
One of the most significant advantages of such a ma-
chine is the effective full connectivity that encodes the
whole problem without sacrificing the majority of qubits
to overcome the QPU connectivity issue. For instance,
Ref. [49] presents a comparison between D-Wave and
CIM in the MaxCut problem solution: the significant
time-to-solution difference for graphs with over 50 nodes
(up to 200 nodes) was observed for dense problems where
CIM demonstrates better results. The difference in per-
formance between the sparsely connected D-Wave ma-
chine and the fully connected CIMs provides strong ex-
perimental support for increasing the qubit-connectivity
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on quantum annealers. In general, CIM offers intriguing
and prospective platforms for studying discrete optimiza-
tion problems powered by the speed of light and effective
electrical feedback. However, implementing a CIM comes
with formidable engineering challenges [50].

Besides specially designed hardware, one of the most
promising approaches in tackling discrete optimization
on universal quantum devices is variational quantum al-
gorithms. In such algorithms, a parameterised quantum
network is iteratively optimized using classical comput-
ing. A paradigm of variational circuits is close to the
neural networks approach, where a deep network cap-
tures the fundamental features of the problem. For sev-
eral decades, research in machine learning was focused on
models that can provide theoretical guarantees for their
performance. However, in recent years, methods based
on heuristics have become dominant, especially for deep
models, partly due to an abundance of data and com-
putational resources. Similarly, a formal proof of quan-
tum advantages of variational quantum algorithms was
not found yet, but applications utilizing NISQ-devices
to solve real-world problems using such algorithms are
already being explored [20].

For instance, algorithms such as QAOA have been ap-
plied to solve NP-hard QUBO problems. However, re-
cent experiments have highlighted the challenges in im-
plementing the QAOA on problem graphs that differ from
the native hardware topology, even for small system sizes.
The latest solution of the MaxCut on a dense problem
processes a 24-node graph using QAOA [51]. There are
other emerging quantum approaches such as the Filter-
ing Variational Quantum Eigensolver (F-VQE) for com-
binatorial optimization problems that have proved to be
more performant than the original Variational Quantum
Eigensolver (VQE) algorithm and QAOA [52].

Most solutions based on modern variational algo-
rithms, e.g., QAOA, or quantum annealing, require a
significant number of qubits to solve real-world MaxCut
related problems. Not considering the chip topology and
qubit interconnectivity, the number of qubits necessary
is equal to the number of classical variables. Such an
encoding requires quantum resources that current NISQ
devices can’t provide due to a limited number of qubits
and limited qubit-interconnectivity.

Therefore, we explore novel encoding and optimiza-
tion techniques for variational algorithms in a gate-based
computing framework. We utilize the hardware-efficient
ansatz [20], and amplitude encoding scheme [53] to trans-
fer the classical optimization problem into the optimal
quantum state search. The algorithm is called QuEnc be-
cause of the algorithm’s underlying Quantum Encoding
method. Inspired by available quantum machine learning
tools [54], we learn the circuit parameters that provide
the desired quantum state, corresponding to the opti-
mal classical solution. The expressibility of the quantum
circuit is set by the number of layers that control the
number of circuit parameters. Here, we do not need to

perform the full state tomography since we operate only
the Z-projection of the state. The whole scheme is de-
scribed in detail in Ref. [55].

We apply QuEnc to the fully connected MaxCut prob-
lem and, leveraging the amplitude encoding, we solve
MaxCut with hundreds and thousands of nodes – a
much larger scale than has previously been possible with
quantum annealing or QAOA. Since QuEnc processes
much larger problems and, therefore, can not be com-
pared with existing quantum alternatives, we use high-
performance mathematical programming solver CPLEX
to analyse the performance of the QuEnc. As the solu-
tion’s performance heavily depends on the classical hard-
ware, we consider two cases: (i) the average local com-
puting setup with 32GB of RAM and 6 CPU cores, and
(ii) the advanced hardware provided by QMware with
100 CPU cores and 12TB of RAM. In both cases, the
quantum algorithm was implemented and simulated us-
ing the <basiq> Python SDK with highly efficient C++
kernels [11].

To define a MaxCut problem, we create a random
weighted graph with weights of edges laying in [0.01, 1],
and minimize the energy function from Eq. 1. Schematic
drawing of the graph is shown in Fig. 3(a).

In case (i), we focus on 256-node fully connected graph
and compare CPLEX and simulated QuEnc approaches.
We need to bear in mind that the exact solution of such
a complex problem is impossible since we face 2256 possi-
ble solutions. We apply QuEnc algorithm with the fully
entangled circuit presented in Fig. 3(b). Due to the am-
plitude encoding QuEnc provides a great advantage to
solving larger problems operating as an encoder – we
reduce the discrete nc-parameter optimization to con-
tinuous O(log nc)-parameter problem. Its convergence,
reduction of the energy (cost) as a function of learning
iterations, is presented in Fig. 3(c). Different colors cor-
respond to different numbers of layers – the increase in
layers leads to an increase in the number of optimized pa-
rameters. The simulated 20-layer QuEnc finds the solu-
tion with cost −8, 500 in 30 minutes, while CPLEX finds
the cost −8, 360 in 5 hours, indicating superior perfor-
mance over the hybrid QuEnc. The transfer of the sim-
ulated QuEnc to real QPU provides a further increase in
speed (2-3x for that problem considering superconduct-
ing QPU). While the presence of noise is expected to
limit the accuracy of the algorithm, remarkably, arising
errors may even help to avoid local minima during the
convergence that only benefits the accuracy. The com-
prehensive study of such an important issue is a subject
of further work.

In case (ii), CPLEX as a well-tuned and flexible solver
leveraging the full power of QMware can compete with
QuEnc and finds the solution with even better cost value.
Therefore, we are able to consider a larger scale prob-
lem with a 1024-node graph, where the optimization
landscape is much more complex. Using encoding tech-
niques helped us to find the solution with good cost value
very fast, but usually that solution could be improved
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Iteration Runtime, min

Solution for 256 nodes Solution for 1024 nodes

...

...

l=1 l=L

Quantum circuit of QuEnc

0.56

0.470.540.530.12

0.83

Maximum Cut Problem

FIG. 3. (a) The schematic drawing of the weighed fully connected graph. The cut that gives the largest value is called
Maximum Cut (orange line) and the search of such a cut is an NP-hard problem. (b) The quantum circuit used in the QuEnc
algorithm with fully entangled quantum state. The circuits parameterised are optimized to sample the classical solution with
the lowest energy (cost) value. (c) The QuEnc and CPLEX performance on complete graphs with 256 nodes. Our quantum
algorithm with ≥ 20 layers finds significantly more accurate solution with lower energy in 1 minute than the CPLEX in 5 hours.
(d) The cost function obtained via quantum algorithm and high-performance CPLEX on complete weighted graphs with 1024
nodes as function of runtime. The solution obtained by simulating quantum circuit with 50 layers in 25 minutes and utilization
the resulting solution as an initial point for the CPLEX solver, which improves the obtained solution for 35 minutes. Such a
hybrid pipeline finds more accurate solution with lower energy in 1 hour than the pure CPLEX.

upon even more. Here, to leverage the whole power of
QuEnc we introduce the hybrid pipeline with the high-
performance classical solver. Mainly, we presolve the
problem using QuEnc obtaining the solution with good
cost and then use that solution as the initial point for the
CPLEX solver.

The QuEnc and CPLEX convergence, reduction of the
energy (cost) as function of execution time, is presented
in Fig. 3(d). Green dots show the QuEnc solution con-
vergence, which reach −13, 400 in 25 minutes. The green
line is the convergence of the CPLEX that starts from
the point that was found by QuEnc. The plato arises
due to the CPLEX internal processes, such as tree build-
ing. The blue line corresponds to the pure CPLEX solu-
tion started at a random point, whose cost is close to the
initial cost of QuEnc that also started from a random

point. The QuEnc→CPLEX pipeline finds better cost
of −134, 520 than CPLEX, −134, 406, providing 0.085%
improvement. We expect that the improvement would be
more prominent with the increase in the problem size and
enchanting QuEnc that falls within the scope of future
work.

B. Machine Learning

Quantum machine learning, both improving quan-
tum technologies with artificial intelligence and enhanc-
ing classical machine learning utilizing quantum effects,
vastly illustrates the power of hybrid quantum comput-
ing.
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First, classical machine learning is becoming increas-
ingly more important for a variety of tasks in quantum
information technologies [56–58]. For instance, reinforce-
ment learning agents are being used for control [59–61],
error-correction [62, 63], and designing new quantum pro-
tocols and experiments [64–66]. The latter is motivated
by the unknown reachability of various configurations in
quantum experiments [67, 68]. These works show that
machine learning can offer dramatic advances in how
complicated experiments are generated. In addition to
reinforcement learning, supervised learning systems were
found useful for, e.g., studying quantum advantage over a
classical approach [69–71], reconstructing quantum states
of physical systems [72–75], and learning compact repre-
sentations of these states [76, 77]. These studies have re-
vealed that deep learning networks can identify complex
patterns and trends in data. It would not be possible
without powerful computers and special-purpose hard-
ware capable of implementing deep networks with billions
of parameters [78]. If machine learning implemented on
HPC could substantially improve quantum devices, the
potential impact would be tremendous.

Second, quantum technologies can massively assist the
most advanced machine learning frameworks – highly au-
tonomous systems that outperform humans at most eco-
nomically valuable work require considerable computa-
tional resources, limiting their performance. Quantum
computing models can potentially improve the training
process of existing classical models [56, 79–81], which al-
lows for finding better extreme points in an objective
function landscape or the same optima with fewer iter-
ations. These methods allow for polynomial speedups,
which are crucial for large and complex problems, where
minor improvements give noticeable gains. Besides, the
recent experiments show that quantum models can sam-
ple intricate probability distributions in a polynomial
time [82], while the same classical sampling could be ex-
ponentially difficult. Among many other methods, the
most promising are quantum neural networks [54, 83–86]
and quantum kernels [87] that are expected to beat clas-
sical models with current noisy quantum devices.

Since NISQ devices limit the freedom in the machine
learning model choice, we focus on the hybrid pipelines
for classification and regression as the most suitable ap-
proaches. Hybrid quantum-classical solvers implemented
in the hybrid quantum cloud can provide higher efficiency
in training by requiring lesser iterations, and can show a
higher prediction accuracy as we demonstrate next.

1. Hybrid Machine Learning Advantages in Classification

To illustrate the difference that quantum circuits in-
troduce in machine learning, we first consider a standard
benchmark Scikit dataset [88] used to test small-scale
classification algorithms. The dataset can be visualized
as a large circle containing a smaller circle in 2D, see

Fig. 4(a).
As a classical machine learning solution to this binary

classification problem, we use a multilayer perceptron
model with 3 neural network layers, shown in Fig. 4(b).
The first layer consists of 2 input neurons and a bias
neuron, followed by a hidden layer with 40 neurons and
a bias, and a single output neuron. Neural network lay-
ers are fully connected, leading to 161 weights in the
network.

As a hybrid quantum machine learning solution to this
binary classification problem, we use a hybrid quantum-
classical multilayer perceptron. This hybrid quantum
neural network consists of both quantum and classical
neural network parts: a 4-qubit quantum circuit fol-
lowed by 3 layers of neurons for a classical part, shown
in Fig. 4(c). The classical part of the hybrid model is the
same as of a classical multilayer perceptron, but without
a bias neuron. The quantum circuit has 4 variational pa-
rameters, leading to a total of 125 weights in the hybrid
quantum neural network (HQNN).

On Fig. 4(d) one can see the training procedure of
the best model over hundred independent models. Both
models have been trained with stochastic gradient de-
scent, Adam optimizer with learning rate 1 × 10−2, and
the Binary cross entropy loss function. The HQNN al-
gorithm achieves a 13% higher accuracy on the test data
(0.831 and 0.940 accuracy for the classical and the hybrid
model, respectively), but also converges much faster than
the classical counterpart (317 and 32 epochs for the clas-
sical and the hybrid model, respectively). On Figs. 4(b)-
(c) one can additionally see a qualitative difference in
how well both models separated data points belonging to
different classes with the training size of 25 samples.

Moreover, by reducing the size of the training data,
the classical model’s ability to learn decreases substan-
tially. Meanwhile, the HQNN does not show any dif-
ference and demonstrates accuracy above 90%, as can
be seen in Fig. 4(e). The obtained results are significant,
since the most difficult part of commercial machine learn-
ing tasks is collecting data and labelling it. Therefore,
it is very useful that this hybrid model manages to learn
well even on small datasets.

The HQNN model used to solve the binary classifi-
cation problem, can be used for a continuous variable
output, namely it can deal with regression problems as
we show next.

2. Hybrid Machine Learning Advantages in Regression

The regression problem under consideration is repre-
sented by the Boston housing dataset [89]. This dataset
is used as a comparison of machine learning models, test-
ing of various algorithms and based on information gath-
ered by the US Census Service regarding housing in the
Massachusetts capital, Boston. The dataset contains 506
samples and 13 feature variables such as average num-
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hybrid quantum-classical multilayer perceptron

e

dataset
multilayer perceptron

FIG. 4. (a) Circles dataset from Scikit [88]. 1000 points are generated: 300 for training procedure and 700 for evaluating model’s
performance. (b) Classic neural network’s architecture. A classification function learned by this network is a dependence of
the output class on the coordinates x1 and x2. (c) Hybrid quantum neural network’s architecture. A classification function
learned by this network is a dependence of the output class on the coordinates x1 and x2. (d) Accuracy on test data for each
epoch during the training procedure. Results are averaged over 10 independent models. (e) Dependence of the classification
accuracy on the training data size.

ber of rooms per dwelling, pupil-teacher ratio, and per
capita crime rate. Our goal is to determine the value
of the median price of owner-occupied homes based on
these features. The data was originally published in [90].
The title of the article suggests that people are willing
to pay more for clean air and that the price of houses
depends on the surrounding area. It is worth noting that
house prices do not exceed 50,000$. This is due to the
fact that the Census Service censored the data and put a
price cap of 50,000$. After all these years, it is impossible
to reliably know the real prices of houses.

The data was downloaded using the Scikit-learn li-
brary [89]. After analysing the data, we find a relation-
ship between the target variable with other features and
selected two features: number of rooms (average number
of rooms per dwelling) and LSTAT (percentage of lower
status of the population). We built a machine learning
model for determining the prices of Boston houses based
on two features we selected. Next, we split the dataset
into training and test samples, 80% and 20%, respec-
tively.

Similar to the classification task, we use the multilayer
perceptron for solving the regression problem. The ar-
chitecture of our classic network is shown in Fig. 5(b)
and consists of three linear layers with the ReLU acti-
vation functions. As for the hybrid neural network, we
construct it by replacing the first classical fully-connected
layer with a quantum variational layer with four qubits,
as shown in Fig. 5(c). Since we decided to use only two
features, the dimension of the input data is equal to two.
Therefore, we encoded the input information into the an-
gles of rotations along the x-axis on the first and third

qubits. It should be noted that the number of parame-
ters in our quantum variation circuit is four versus twelve
parameters in the first classical layer in the classical ana-
logue of our hybrid network.

We train our classical and hybrid models using stochas-
tic gradient descent, Adam optimizer with the learning
rate 3 × 10−3 and compute the mean squared error loss
function. Mean absolute error is used to evaluate the
model’s performance on the test set. To compare the
classical and hybrid neural networks, in Fig. 5(d) we plot
depicting the dependence of test losses on the number
of epochs during the training procedure. This plot was
obtained by averaging the results across one hundred in-
dependent models. The HQNN has an advantage over
the classical neural network, as the test loss is 12% lower
in the hybrid case (0.076 and 0.067 loss values for the
classical and hybrid models, respectively).

Another interesting feature is scaling. In Fig. 5(e) we
show test loss as a function of the number of training
data samples used for training. Every point of this plot,
taken every 50 steps in training data size, is obtained
by averaging across 100 independent models. Similar to
the classification problem, in the regression problem we
observe that the hybrid quantum advantage is robust,
and the quantum advantage is observable in an entire
range of training data sizes. The advantage that we ob-
serve ranges between 12% improvement for the training
set size of 400 (see Fig. 5(d)) and 16% improvement for
the training set size of 125 (0.109 and 0.092 loss values for
the classical and the hybrid model, respectively). Similar
to the Circles Scikit dataset, we observe a better advan-
tage for smaller dataset sizes.
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FIG. 5. (a) Boston Housing dataset from Scikit [89]. (b) Classic neural network’s architecture. A function learned by this
network is a dependence of the value of houses on the number of rooms and the % of lower status of population. (c) Hybrid
quantum neural network’s architecture. A function learned by this network is a dependence of the value of houses on the
number of rooms and the % of lower status of population. (d) Loss on the test data for epoch during the training procedure.
Results are averaged over 100 independent models. (e) Dependence of the test loss on the training data size.

C. Quantum-inspired simulation

The tantalizing goal of quantum computing is to per-
form calculations beyond the reach of any classical com-
puter, e.g., high-performance modelling of complex phys-
ical and biological systems. The NISQ devices suffer
from many sources of errors, which limit the degree of
entanglement and their current performance. However,
quantum-enabled algorithms, even being implemented
via a tensor network on classical hardware, can provide
an advantage at solving certain problems.

In general, tensor decompositions and tensor networks,
which were initially introduced in quantum physics
for multiparticle system analysis [91], are emerging as
promising methods for high-dimensional problems, sim-
ulation in particular. The main advantage of tensor net-
works is logarithmic scaling in the studied problem’s di-
mension for some tasks, which is similar to scaling ex-
pected in quantum computers. Moreover, the topology
of tensor networks is similar to quantum circuits architec-
ture, which makes them an efficient tool for low-entangled
quantum computer virtualization and simulation of cer-
tain physical systems [92].

Many physical and biological simulations depend on
solving partial differential equations describing the phys-
ical processes behind studied systems. Using tensor de-
composition, one can find an efficient way to solve dif-
ferential equations saving memory and speeding up the
solution.

Here, as an illustrative example, we study the solu-
tion of second-order linear partial differential equations
via tensor networks. Mainly, we consider the Poisson
equation, which is a generalization of Laplace’s equa-
tion, that is frequently used in various areas of science
and engineering, e.g., computational fluid dynamics [93],
electrostatics [94], the theory of Markov chains [95], and
density functional theory and electronic structure calcu-
lations [96].

We solve the Poisson equation using tensor networks
by discretisation on a regular grid in Cartesian coordi-
nates and processing the resulting system of linear equa-
tions. Leveraging the fact that the matrix corresponding
to the second-order derivative can be represented as a
matrix product operator [97], we can solve such a sys-
tem of linear equations employing a method based on
an alternating minimal energy solver [98]. Those types
of algorithms provide polylogarithmic scaling in runtime
and memory, offering exponential speedup in comparison
with conventional classical methods that have polynomial
scaling.

Let us consider the solution of the Poisson equation in
a 3-dimensional space with zero boundary condition

−∆u = 1 in Ω = [0, 1]3, u |∂Ω = 0.

We reduce the differential equation to a linear system,
represent it as a tensor network, process and contract
tensors to obtain a classical solution. In order to ver-
ify the solution we consider one of the most powerful
tools in a linear systems solver – a conjugate gradient
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FIG. 6. (a) The runtime of the Poisson equation solution as a
function of the space discretisation for the conjugate gradient
method (black) and tensor networks (red). The embedding
shows the log-log dependency. Tensor networks provide an
exponential advantage in the solution of such a problem. (b)
The runtime of the Poisson equation solution as a function of
the space discretization for the tensor network-based method.
Such a method allows solving problem with 109 points in space
discretisation in less than 20 seconds using just two CPUs.

method. The runtime of the solution for both a tensor
network and conjugate gradient methods as a function
of discretization accuracy, number of grid points, is pre-
sented in Fig. 6(a). It is clear that the tensor network
solver provides an exponentially faster solution in com-
parison with classical approaches with similar scaling as
proposed quantum algorithms [99]. However, in com-
parison with NISQ-device implementation, our method

allows us to solve large-scale problems in seconds, as pre-
sented in Fig. 6(b). Here, we solve the Poisson equation
on 109 spatial points with perfect fidelity via tensor net-
works in less than 20 seconds using just two Intel Xeon
2.2GHz CPUs and 12 Gb of RAM.

Leveraging the full power of the QMware hybrid
quantum cloud, a tensor network approach can handle
larger and more complex problems that will be studied
in the future. Such a method can be extended to more
complex differential equations in many areas, including
computational fluid dynamics, e.g., Boltzmann equation,
financial simulations, e.g., Fokker-Planck equation, aero-
dynamics and heat transfer, e.g., parabolic differential
equations.

IV. CONCLUSION

This paper presents a hybrid quantum architecture for
hardware and software targeting maximizing application-
specific practical advantage today. This architecture puts
forth hybrid quantum algorithms for optimization, ma-
chine learning and simulation. We demonstrate solution
performance for problems across these application do-
mains, through examples of discrete graph-based opti-
mization, classification, regression and partial differential
equations. In the MaxCut optimization problem with
256 nodes with the limited hardware, the QuEnc algo-
rithm provided a 1.7% better solution in 1 minute than
the CPLEX solver in 5 hours. The hybrid QuEnc algo-
rithm achieved a 0.085% better solution on a 1024 node
MaxCut problem at the fixed runtime. Next, in classi-
fication, the hybrid quantum neural network provided,
compared to a classical analogue, a 13% higher accuracy
and a much better convergence time (32 epochs instead
of 317) on the Circles dataset. In regression, the hy-
brid quantum neural network outperformed the classical
analogue by 12-16% depending on the training set size.
Finally, in solving the Poisson equation, tensor networks
were shown to be exponentially faster than the conjugate
gradient method providing an improvement in a runtime
by several orders of magnitude.

Through our hybrid quantum cloud, QMware, we
hence make these demonstrated benefits accessible in
an industrial context. The introduced hybrid quantum-
classical approach looks to meet the need of industrial
users to get the best compute results for their applica-
tions, irrespective of whether the underlying hardware is
classical or quantum. This paves the way toward accel-
erating quantum adoption for the benefit of business and
society.
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