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The quantum key distribution (QKD) is a revolutionary cryptography response to the rapidly growing cyberattacks
threat posed by quantum computing. Yet, the roadblock limiting the vast expanse of secure quantum communication
is the exponential decay of the transmitted quantum signal with the distance. Today’s quantum cryptography is trying
to solve this problem by focusing on quantum repeaters. However, efficient and secure quantum repetition at sufficient
distances is still far beyond modern technology. Here, we shift the paradigm and build the long-distance security of the
QKD upon the quantum foundations of the Second Law of Thermodynamics and end-to-end physical oversight over the
transmitted optical quantum states. Our approach enables us to realize quantum states’ repetition by optical amplifiers
keeping states’ wave properties and phase coherence. The unprecedented secure distance range attainable through
our approach opens the door for the development of scalable quantum-resistant communication networks of the future.

The quantum threat to secure communications makes top headlines and
Niagara Falls of reviews and research explaining how quantum comput-
ers using, for example, Shor’s algorithm 1, devalue the existing crypto-
graphic schemes. Remarkably, the same advances in quantum physics
that have created this quantum threat enable solutions for quantum se-
curity. The core of the novel quantum technology protecting the data
transmission is known as quantum key distribution (QKD) 2–6. However,
existing QKD protocols appear to be efficient only at relatively short
distances 7, 8. A general restriction is the Pirandola-Laurenza-Ottaviani-
Banch (PLOB) bound 9, according to which the secret key rate decreases
exponentially with the channel length. The simplest approach to dealing
with this issue is to use the trusted reproduction nodes along the trans-
mission line 10–12, which is a compromise to the overall security. The al-
ternative solution is the utilization of quantum repeaters 13–28 which elim-
inates the need for trust in the intermediate relay. However, since quan-
tum repetition manipulates fragile entangled states, its implementation at
a long scale remains beyond state-of-the-art technologies. Here, contem-
plating the physical nature of the quantum states’ transmission, we lift
the PLOB bound by using restrictions of quantum thermodynamics and
the end-to-end physical control over losses in the optical quantum chan-
nel. We shift the quantum cryptography paradigm building on the same
quantum considerations that provide the foundations of the Second Law
of Thermodynamics. Our approach ensures signal repetition through op-
tical amplification, presumes no trust at the intermediate channel points,
and expands the secure transmission range to global distances.

General idea
Conventionally, the eavesdropper (Eve) is seen as capable of exploiting
all the losses from the transmission channel, irrespective of their ori-
gin. This puts a strong restriction on the number of photons in the trans-
mitted quantum states, which significantly complicates their repetition.
However, upon close quantum mechanical examination, this presuppo-
sition appears unrealistic. In reality, the majority of losses in optical
fibers occur due to the light scattering on the quenched disorder and are
distributed homogeneously along the line (hereinafter, we will be refer-
ring to such losses as to natural losses). In a single mode silica fiber’s
1530–1565 nm wavelength window, the standard for modern telecommu-
nications, these losses amount to approximately 4 × 10−5 of the passing
signal’s intensity per meter.

We describe the information dynamics of the randomized signal
transmitted over an optical channel. This consideration is carried out
analogously to consideration of the Second Law of Thermodynamics,
i.e., the dynamics of entropy, through the lens of the microscopic quan-
tum mechanical laws 29–31. Had the system been isolated, its entropy
would not decrease, i.e., Eve would not be able to obtain any information.
In the presence of natural losses, the system can no longer be regarded as
isolated, and thus, the eavesdropper gets an opportunity to decrease the
system’s entropy in analogy with the quantum Maxwell demon. How-
ever, in order to glean information from the scattering losses of relatively
weak signals that we employ for our approach, Eve has to use quantum
detection devices spanning an unfeasible length of optical fiber, see Sup-
plementary Note 1. That is why one concludes that in this weak signal
regime, Eve is unable to effectively collect and exploit natural losses.

Losses other than natural ones can, in turn, be physically controlled.
We propose a technique of physical line control (line tomography) im-
plying that legitimate users detect local interventions by comparing the
constantly updated tomogram of the line with the initial one, knowingly
obtained in the absence of Eve. Line tomography involves sending the
high-frequency test light pulses and analyzing their reflected (via the
technique known as the time-domain reflectometry 32) and the transmit-
ted components. The coupling of photons to any eavesdropping sys-
tem is impossible without modifying the fiber medium, which in turn
inevitably changes the line tomogram. Unable to perform such radical
interventions unnoticed, Eve is thus restricted to introducing small local
leakages, which are precisely measured by the users. This implicates the
possibility of employing the information-carrying light states containing
the numbers of photons that are sufficient to repeat the states through op-
tical amplification yet not enough to be easily eavesdropped on. Utilizing
a cascade of accessible optical amplifiers to counteract the degradation of
signals over extensive distances, as opposed to the employment of quan-
tum repeaters 13–28, enables global transmission and high key distribution
rates. It is important to note that these optical amplifiers should not be
viewed as trusted nodes, as the integrity of the transmission scheme is
maintained through end-to-end control by legitimate users, and there is
no recourse to the form of classical data.

We showcase our approach via a prepare-and-measure QKD proto-
col utilizing non-orthogonal coherent photonic states |γ0〉 and |γ1〉 for
encoding 0 and 1 bits. In the protocol’s framework, our approach
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means restricting the fraction of photons leaked to Eve, rE, to ensure
that the leaked states |

√
rEγ0〉 and |

√
rEγ1〉 sufficiently overlap, i.e.,〈√

rEγ0

∣∣∣√rEγ1

〉
∼ 1 (these states become mixed if the transmission chan-

nel includes amplifiers, but for now we ignore this fact for the sake of
simplicity). Eve cannot by any means—except by completely blocking
part of the signal pulses 33 but this is prevented by the line tomography—
extract more information than the Holevo quantity χE

34 which tends to
zero when

〈√
rEγ0

∣∣∣√rEγ1

〉
→ 1. The users monitor the value of rE and

adapt the parameters of |γ0〉 and |γ1〉 to ensure that the intercepted pulses
are poorly distinguishable.

Thus, we overcome the PLOB bound by what can be called the
“channel device-dependent” approach. This approach is no less physi-
cally justified as a traditional device-dependent scenario where the eaves-
dropper is assumed not to be able to substitute some of the equipment at
the sender and receiver side. Hence, there are no compromises in security
that allow us to increase the secret key distribution distance, only higher
device dependence, with correct channel work ensured by tomography
methods.

Protocol description
We put forth an exemplary protocol based on our physical control ap-
proach. Let the legitimate users, the sender, Alice, and the receiver, Bob,
be connected via a classical authenticated communication channel and
optical line serving as a quantum channel. The protocol is designed as
follows:

0. Initial preparation—Alice and Bob carry out initial line tomogra-
phy to determine the natural losses that Eve cannot exploit. At this
and only this preliminary step, the legitimate users must be certain
that Eve has no influence on the line. The users share the tomogram
via the classical channel.

1. Alice and Bob perform the physical loss control over the line and,
through comparison with the initial line tomogram, infer the frac-
tion rE of the signal possibly seized and exploited by Eve. The users
also localize the points of Eve’s intervention. To update the line to-
mogram, users exchange information via the classical channel. If
the stolen fraction grows too large so that the evaluated legitimate
users’ information advantage over Eve disappears—the analytical
estimate for this advantage is provided below—the transmission is
terminated.

2. Using a random number generator, Alice produces a bit sequence
of the length L. Alice ciphers her bit sequence into a series of L
coherent light pulses, which she sends to Bob. The bits 0 and 1 are
encoded into coherent states |γ0〉 and |γ1〉 respectively. Their pa-
rameters are optimized based on the known fraction of the signal
seized by Eve rE and Eve’s position in the line. The optimal pa-
rameters correspond to the maximum key distribution rate at given
losses in the channel, the analytical relation for which is presented
below. The optimal parameters are considered to be known to Alice
and Bob and also to Eve.

3. The signals are amplified by the cascade of optical amplifiers in-
stalled along the optical line, possibly equidistantly. Bob receives
the signals and measures them.

4. Alice and Bob perform the postselection, i.e., they discard the po-
sitions corresponding to inconclusive measurement outcomes. The
postselection criteria are defined by the set of parameters, which are
optimally calculated by the users.

5. The users perform error correction. The procedure can be done
with well-known classical methods, e.g., linear codes 35–37, or with
methods designed specifically for the QKD, such as the Cascade
protocol 38–40.

6. The users estimate Eve’s information obtained at the previous
stages and perform the privacy amplification procedure to produce
a shorter key (e.g., using the universal hashing method 41) on which
Eve has none or negligibly small information.

Alice and Bob repeat steps from 1 to 6 until satisfied with the total
shared key length. The particular way of encoding bits 0 and 1 into
the parameters of coherent pulses |γ0〉 and |γ1〉 may vary. For illustra-
tive purposes, we concentrate on the two simplest and straightforward
schemes, viz. encoding bits into pulses with (a) different photon num-
bers, |γ0|

2 , |γ1|
2, and phase randomization 42–44, and (b) same photon

numbers, |γ0|
2 = |γ1|

2, and phases different by π. In both encoding
schemes, Alice varies |γ0|

2 and |γ1|
2.

More sophisticated encoding schemes, for instance, schemes lever-
aging the pulses’ shapes, make exploiting the natural scattering losses
even more unsolvable. To complicate the problem further, the cable de-
sign may include an encapsulating layer of metal of heavily doped silica,
transforming the scattering radiation into heat under the control of the
users; see Supplementary Note 2 for details.

Protocol security
Here, we delve into the security of the described protocol, by building
upon the following:

1. Alice and Bob each generate random numbers that Eve cannot pre-
dict.

2. Other from the transmission channel—which is a fiber line with the
embedded optical amplifiers—and the classical authenticated chan-
nel, users’ equipment is isolated from Eve.

3. Eve cannot effectively collect and exploit natural losses from the
transmission channel. To eavesdrop on the signal, Eve must in-
troduce new artificial local leakages. Eve can also use the local
leakages on the original fiber discontinuities, such as bends or con-
nections.

4. The transmission line between Alice and Bob is characterized by
the initial line tomogram. All losses constituting deviations from
the initial tomogram are attributed to Eve.

5. Eve is bound to the beam-splitting attack: she may seize some frac-
tion of the signal at any point of the optical line.

Attacks that deviate from the beam-splitting attack necessitate a signifi-
cant alteration of the line tomogram, in which case the protocol should be
terminated; as such, we will not delve into them here. We will refer to the
point of Eve’s intrusion into the line as the “beam splitter” and assume
that any reflection back towards Alice from this point is insignificant. As
our analysis will demonstrate, the protocol’s efficiency is contingent on
Eve’s placement along the line. For the sake of simplicity, we will not
examine scenarios in which Eve intercepts from multiple points along
the line. However, with some overhead, this scenario can be reduced to
a situation in which Eve is effectively positioned at the single worst spot
(for the users) among all of the locations from which she intercepts the
light.

To evaluate the protocol’s security, we describe the evolution of Al-
ice’s, Bob’s, and Eve’s quantum systems and quantify the information
available to different parties. We derive an analytical expression for the
length of the final secure key Lf, which represents the users’ informa-
tional advantage over Eve given the fixed value of rE and the distance
between Alice and Eve DAE. This expression depends on the encoding
and postselection parameters and should be maximized by the users to
determine the parameters’ optimal values. The condition Lf/L > 0 for
the chosen parameters ensures successful secret key generation 45.

At the beginning of the protocol, Alice encodes the logical bits into
the coherent states with the different complex amplitudes, 0→ |γ0〉 , 1→
|γ1〉. In the photon number encoding scheme, the pulses are different
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in the average numbers of photons |γ0|
2 and |γ1|

2, while the phase of
each pulse is random. The photon number measurement at Bob’s end is
formalized in terms of the projective operators:

Ê0 =

µ−θ1∑
k=µ−θ3

|k〉 〈k| , Ê1 =

µ+θ4∑
k=µ+θ2

|k〉 〈k| , Êfail = 1̂ − Ê0 − Ê1, (1a)

where Ê0, Ê1 and Êfail correspond to 0, 1, and inconclusive—meaning
that this result should be later discarded—outcomes respectively, |k〉
is the Fock state of k photons, 1̂ is the identity operator, µ =(
|γ0|

2 + |γ1|
2
)
/2, and θ1−4 are the postselection parameters tuned by Bob

depending on the proportion of the stolen signal. The photon numbers
between µ − θ1 and µ + θ2 are difficult to relate to 0 or 1, while num-
bers below µ − θ3 and above µ + θ4 are associated with the information
corruption: as we show in Supplementary Note 4, optical amplification
imposes correlations between pulses received by Bob and Eve, and ex-
treme photon numbers at Bob’s end also constitute very distinguishable
signals for Eve.

For the phase encoding (note that using this scheme requires that
the optical fiber is phase-preserving), the pulses are characterized by the
same average photon number, |γ0|

2 = |γ1|
2, but by different, although

fixed, phases. For instance, the relative phase can be π, γ0 = −γ1 = γ ∈
R, and then, to distinguish the pulses, Bob should perform homodyne
measurement of the quadrature q̂ corresponding to the real axis in the
phase space:

Ê0 =

θ′2∫
θ′1

dq |q〉 〈q| , Ê1 =

−θ′1∫
−θ′2

dq |q〉 〈q| , Êfail = 1̂ − Ê0 − Ê1, (1b)

where |q〉 is the eigenstate of q̂, and θ′1,2 play the same role as θ1−4 in
the photon number encoding case. With this scheme, we deal only with
two postselection parameters because probability distributions of mea-
surement results for two pulses are symmetric with respect to q = 0.

For both encoding schemes, the operational values of |γ0|, |γ1| and
θ1−4 (θ′1,2) are determined via maximizing the analytical expression for
the predicted length of the final secure key Lf, which, in turn, depends on
the proportion of the stolen signal rE and the distance between Alice and
Eve DAE. Correlations between the states at Eve’s and Bob’s disposal
due to optical amplification drastically complicate the analytical descrip-
tion of states’ evolution necessary for obtaining the expression for Lf.
We provide such a description in Methods, while here we write the final
state of the combined quantum system of Alice’s random bit (A), the sig-
nal component seized by Eve (E), and Bob’s memory device storing the
measurement outcome (B) after the legitimate users discard invalid bits,
i.e., conditional to the successful measurement outcome:

ρ̂f
ABE =

∑
b=0,1

∑
a=0,1

1
2p(X|a)

∫
d2α P(α,

√
T1γa,G1)

∫
d2β 〈β| Êb |β〉

× P
(
β,

√
(1 − rE)T2α,G2

)
|a〉 〈a|A ⊗ |b〉 〈b|B ⊗ |

√
rEα〉 〈

√
rEα|E , (2)

where

P(α, γ,G) =
1

π(G − 1)
exp

− |α − √Gγ|2

G − 1

 , (3)

and integration operations are performed over the complex plane, i.e.,
d2α ≡ dRe(α) dIm(α), T1(2) and G1(2) are, respectively, the transmission
probability and amplification factor (the ratio of the output photon num-
ber to the input one of an amplification channel) of the effective loss and
amplification channels equivalent to the cascade of amplifiers and losses
before (after) Eve’s beam splitter (these values depend on the distances
between Alice and Eve, DAE, between Alice and Bob, DAB, and between
neighboring amplifiers, d, see Eqs. (57–59) in Supplementary Note 3),
p(X|a) is the probability of conclusive result in the case that Alice sends
bit a = {0, 1} (the explicit form is given by Eqs. (12) and (13) in Meth-
ods).

In the case of photon number encoding, Alice randomizes the phase
of each pulse. As a result, neither Bob nor Eve would know the phase ϕ
of the incident pulse |γa〉 = ||γa|eiϕ〉 which effectively means that the final
state of the combined system is described by ρ̂f

ABE from Eq. (2) averaged
over ϕ (see Supplementary Note 4 for details):

〈
ρ̂

f
ABE

〉
ϕ

=
∑
b=0,1

∑
a=0,1

1
2p(X|a)

1
2π

2π∫
0

dϕ ·
∫

d2α P(α,
√

T1|γa|eiϕ,G1)

× |a〉 〈a|A ⊗ |b〉 〈b|B ⊗
∣∣∣√rEα

〉 〈√
rEα

∣∣∣
E

×

∫
d2β P

(
β,

√
(1 − rE)T2α,G2

)
〈β|Êb|β〉 . (4)

After the invalid bits are discarded, the information available to Eve
about the bits kept by Alice (per bit) is given by

I(A,E) = S (A) − S (A|E), (5)

where S (X) = −tr
[
ρ̂X log2 ρ̂X

]
is the quantum von Neumann entropy of

system X (which is A, B, E, or their combinations, the corresponding
density matrices are obtained from Eq. (2), or Eq. (4) if there is phase
randomization, by taking partial traces), and S (Y|X) = S (XY) − S (X) is
the conditional entropy. We calculate the upper bound of I(A,E) differ-
ently in the cases of photon number and phase encoding. In the first case,
we use the Holevo bound 34, see Supplementary Note 4. In the second
case, we also rely on the concavity of relative entropy, see Supplemen-
tary Note 5.

By performing the error correction procedure, the legitimate users es-
tablish a shared bit sequence at the price of disclosing an additional error
syndrome of the length f ·S (A|B), where f ≥ 1 depends on the particular
error correction code. As we do not intend to address any specific error
correction method, we put f = 1 corresponding to Shannon’s limit. After
the procedure, Eve’s information becomes Ĩ(A,E) = I(A,E) + S (A|B).
To eradicate Eve’s information about the shared bit sequence (raw key),
Alice and Bob perform the privacy amplification procedure tailored pre-
cisely for the estimated information leakage due to the local line losses
and error correction, see Methods. The length of the final key is

Lf = pXL ·
(
S (A) − Ĩ(A,E)

)
= pXL · (S (A) − S (A|B) − I(A,E)) , (6)

where L is the number of originally generated random bits, and pX =
1
2

∑
a,b=0,1 p(b|a) is the proportion of bits that are not discarded at the post-

selection stage.
Taking L and Lf as the numbers of bits per unit of time, Eq. (6)—the

explicit form of which can be obtained using Eqs. (1a or 1b), (2 or 4), and
Eqs. (12, 13) from Methods—gives us the key distribution rate (or key
rate for short) as a function of rE, |γ0|, |γ1| and θ1−4 (or θ′1,2). Implicitly, the
equation also includes the distance between two neighboring amplifiers d
and the distances between Alice and Bob, DAB, and Alice and Eve, DAE.
As we specified above, the users obtain the optimal values of |γ0|, |γ1| and
θ1−4 (or θ′1,2) by maximizing this analytic formula for measured values of
rE and DAE. To be able to distribute secret keys, the users have to possess
an information advantage over Eve 45, which in our case is indicated by
the positivity of the calculated Lf/L. If the evaluated Lf/L is not positive,
the protocol should be terminated.

Numerical simulations
Figure 1 displays the results of our numerical simulations. We plot the
optimum (over the signal and postselection parameters) of the normal-
ized key rate Lf/L as a function of the proportion rE for two different
transmission distances: a, b, c DAB = 1000 km, d, e, f DAB = 40, 000 km.
The distance between the neighboring amplifiers d = 50 km. Plots a, d
relate to the photon number encoding with different curves correspond-
ing to different values of DAE. Within the selected range of rE we have
1 & Lf/L & 10−4; correspondingly, if the initial random number gener-
ation rate L = 1 Gbit/s, then 1 Gbit/s & Lf & 100 Kbit/s. Notice that the
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Figure 1 | Numerical simulations of the protocol for different parameters and encoding schemes. a The normalized key rate Lf/L as function of the proportion
of stolen signal rE for the photon number encoding and DAB = 1000 km. b The same for the phase encoding. c Comparison of the photon number and phase
encoding schemes for DAB = 1000 km. d Lf/L(rE) for the photon number encoding and DAB = 40, 000 km. e The same for the phase encoding. f Comparison for
the distance DAB = 40, 000 km. In all plots, the distance between neighboring amplifiers d = 50 km. Different curves in each plot correspond to varying distances
between Alice and Eve, DAE. The dependence of Lf/L on DAE is due to the fact that the amount of eavesdropped information is affected by correlations and noise
imposed by optical amplifiers. The comparative plots c, f of two encoding schemes imply the respective worst conditions (with Eve positioned in her best way). In
each point of every plot, the protocol’s parameters—i.e., the photon numbers

∣∣∣γ0,1
∣∣∣2 and postselection parameters θ1−4 (or θ′1,2)—are numerically optimized for the

fixed values of DAB, DAE and rE with respect to Lf/L. Depending on rE, the optimal photon numbers |γ0 |
2 and |γ1 |

2 vary from 0.8 · 104 to 3.0 · 104 photons in a, from
0.4 · 103 to 7.2 · 103 photons in b, from 2.0 · 105 to 3.0 · 105 photons in d, and from 0.4 · 105 to 3.0 · 105 photons in e.

key rate is the worst in the situation where Eve is close to the middle
of the transmission line. This is explained by the side effects of sig-
nal amplification: the closer Eve is to Bob, the more Eve’s part of the
signal is correlated with Bob’s, yet, the noisier it becomes (see Supple-
mentary Note 4). Given such a trade-off, Eve gets the largest amount of
information, standing somewhere in the vicinity of the line’s midpoint.
However, in the phase encoding case, reflected in b, e, the correlations
outweigh noise even when Eve is close to Bob—hence, the lower key
rate for larger DAB.

Plots c, f show the protocol’s performance under both encoding
schemes in the respective worst-case scenarios: Eve’s position is such
that the key rate is the lowest. As we qualitatively estimate in Methods
and further rigorously reaffirm in Supplementary Note 3, the minimal
detectable leakage for a long line comprising a cascade of M equidistant
amplifiers is rmin

E ∼
√

MG/n, where G is the amplification factor of a
single amplifier, and n is the number of photons in a test pulse. Taking
the distance between the neighboring amplifiers d = 50 km, G = 10,
and n = 1014, for the 1000 km-long (M = 20) and 40, 000 km-long lines
(M = 800) we get rmin

E ∼ 10−6 and rmin
E ∼ 10−5, respectively. Near to the

loss control precision limit, both encoding schemes allow for high key
rates: in the case of the photon number encoding maximum Lf/L is 0.99
for 1000 km and 0.57 for 40, 000 km; for the phase encoding, the respec-
tive values are 0.98 and 0.27. Being better in terms of the key rates, the

photon number encoding is also less demanding to the infrastructure as
the phase preservation and phase reference are unnecessary.

Physical loss control and amplification
Let us outline possible implementations of the basic technological com-
ponents of the protocol, the physical loss control and the signal repeti-
tion by optical amplifiers. The physical loss control methods are based
on analyzing scattered components of the high-energy test pulses sent
along the fiber. The optical time-domain reflectometry comprises the in-
jection of test pulses into the fiber and the subsequent measurement of
the temporal sequence of their back-scattered components. The response
delay defines the distance to a particular scattering point, while its mag-
nitude reflects the respective losses. Moreover, characteristic features
of the response allow for determining the nature of the respective line’s
discontinuity; see the exemplary reflectogram in Supplementary Note 2.
This is essential for identifying and mitigating local losses at the initial
preparation stage and for localizing the potential eavesdropper later. An
accurate reflectogram is obtained by averaging over multiple test runs
(during which a test pulse travels to the end of the fiber and all its re-
flections return back); accumulating sufficient statistics may, in reality,
take a few seconds. Then the high operational speed of the loss control is
assured by its second element that we call transmittometry: Alice sends
test pulses comprising a large number of photons to Bob, and they cross-
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Figure 2 | Schematics of the proposed bidirectional optical amplifier. The
doped fiber section is embedded into the main fiber line and linked to the pump-
ing diode through the WDM.

check the sent and received photon numbers inferring the losses in the
channel. Unlike reflectometry, transmittometry does not enable the users
to localize and identify individual leakages but immediately updates their
magnitude. Thus, the two control methods complement each other: the
users are constantly aware of the magnitude of leakages and can localize
them after accumulating sufficient reflectometry statistics.

To discriminate between the intrinsic and artificial line losses, the le-
gitimate users prerecord the initial undisturbed line tomogram, including
the reflectogram and the total proportion of losses in the line, and use
this tomogram as a reference. The fiber material, silica, has an amor-
phous nonreproducible structure, making its reflectogram a physically
unclonable function. With that, the fiber core can be slightly doped,
with, e.g., Al, P, N, or Ge, to tune its tomography results and achieve
the optimal parameters such as dispersion. The most general eavesdrop-
ping attack implies a unitary transformation of the state of the combined
system comprising the propagating signal and some ancillary eavesdrop-
ping system. However, coupling of photons to devices outside the line
requires making significant alterations to the fiber medium, which would
inevitably change the reflectogram and hence will be detected. Quantum
cryptography also addresses attacks exercising the partial blocking of the
signal and the subsequent unauthorized substitution of the blocked part.
Any intervention like that would inevitably and permanently (even if Eve
at some point decided to disconnect from the line) affect the tomogram of
the transmission line and hence will be detected by the legitimate users.

The key distribution itself should go in parallel with accumulating
the reflectometry statistics. If, at some point, the reflectogram shows
an intrusion into the line, the users should respond with the appropriate
post-processing of the bits distributed during the formation of the re-
flectogram. This may possibly come down to discarding the whole bit
sequence. Ideally, the physical loss control should be conducted per-
manently and should not halt even during the pauses in the key distri-
bution. Taking the transmittometry test pulses’ duration of the order of
1 ns makes any real-time mechanical intrusion into the line immediately
detectable.

The principal task of the physical loss control is to ensure that Eve
does not get enough photons to obtain the informational advantage over
Bob. With that, signal pulses and test pulses still carry large numbers of
photons, making it possible to repeat them via optical amplification. The
repeater can particularly be arranged as a doped fiber section embedded
into the main line and pumped to produce amplification gain in the pri-
mary mode. In telecommunications, the most common dopant is erbium:
pumped at the wavelength of 980 nm the erbium-doped fiber generates
the gain at around 1550 nm which fits into the transmission window of
the silica-based fiber. The magnitude of the resulting signal amplification
depends on the concentration of the erbium ions, the length of the doped
fiber section, and the power of the pumping radiation. The amplification
principle is explained in Methods.

Usually, doped fiber amplifiers utilize optical isolators, which allow
the light to pass only in one direction. This minimizes the risk of multi-
ple reflections inside the doped fiber section. In our protocol, however,
the optical isolators would block the reflected light hindering the end-to-

end time-domain reflectometry. Besides, the amplifiers typically include
tap couplers diverting about 1% of the radiation into the photodetectors
to monitor the amplifiers’ operation, and this fraction can possibly be
seized by the eavesdropper. We hence opt out of both the optical isola-
tors and tap couplers and utilize the design of the bidirectional optical
amplifier. The amplifier’s sketch is displayed in Fig. 2. The fiber core is
connected to the wavelength-division multiplexing (WDM) system. The
WDM system is a beam splitter-like device for guiding the radiation of
the different wavelengths into a single optical fiber. In our case, it is
intended to feed the doped fiber section with the pumping radiation nec-
essary to excite the active fiber’s dopant atoms. Correspondingly, the
WDM is connected to the active fiber and the pumping diode. Finally,
active fiber is connected to the main fiber line. Provided that the neigh-
boring amplifiers are separated enough, they are not subject to significant
cross-talk. Our preliminary experiments reveal how the 1000 km-long
line with the standard telecom distance d = 50 km between amplifiers
can be made stable with the very restricted signal noise in the line, even
in the absence of optical isolators. We find that the signal wavelength of
1530 nm—corresponding to the peak of the amplification factor spectrum
of the erbium-doped fiber amplifier—is more preferable than the stan-
dard 1550 nm wavelength. Fixing G = 1/T for 1550 nm means greater
amplification for the noise in the modes near 1530 nm, which, in turn,
may disrupt the stability of the amplifiers’ operation, possibly turning
them into lasers. But this is not the case if 1530 nm is already the target
wavelength itself.

A possible eavesdropping attack on the amplifier may consist of in-
creasing the pumping power and stealing the surplus of the amplified
radiation. Of course, hooking up to the line would change its tomo-
gram and thus will be detected. Nevertheless, the following constructive
feature of the amplifier will serve as an additional element of protection.
The doped fiber section will contain the near minimum number of dopant
ions necessary to amplify the signal with the target amplification factor.
Let the operational pumping power Pp match the target amplification fac-
tor G. With the increase of the pumping power, the relative population
inversion asymptotically approaches unity, which corresponds to the am-
plification factor G + δG. The fraction of signal that Eve can possibly
steal by inflating the pumping power is limited by δG/G, which is small,
if at Pp almost all of the ions are already excited. The number of ions
and the value of Pp should be such that the maximum achievable Eve’s
makeweight, summed over all amplifiers installed into the line, is smaller
than the minimum detectable leakage.

Discussion and conclusions
The standard assumption in quantum cryptography, known as channel
device independence, posits that all leakages from the quantum chan-
nel can be fully exploited by an eavesdropper. This assumption lim-
its key rates to the PLOB bound 9, where the maximum rate scales as
− log2(1 − η) bits per channel with the transmittivity η, making the rates
impractically small at long distances. By considering the physical quan-
tum principles of the signals’ transmission and introducing physical loss
control, we change this paradigm. In our approach, legitimate users can
check what fraction of losses is available to the eavesdropper and make
sure that this fraction contains a deficient quantity of information. While
Eve must face the thorny task of discriminating between weak quantum
states, Bob receives signals containing relatively large numbers of pho-
tons and has a vast information advantage. By utilizing end-to-end line
tomography and by capitalizing on the fact that the natural losses are vir-
tually impossible to be exploited by an eavesdropper, our approach lifts
the PLOB restriction, and significantly extends the distance over which
practical QKD can be implemented without compromising security: par-
ticularly, without relying on trusted nodes. Unlike trusted nodes, opti-
cal amplifiers do not convert sent quantum information into the classical
form, and are controlled directly by users with their end-to-end control.

The proposed approach maintains the fundamental advantage of the
QKD, everlasting security 46–49, ensuring that distributed keys will re-
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main secure even against future technologies or attacks that may be de-
veloped. In the forthcoming publication, we will address the experimen-
tal realization of the QKD based on our approach for the transmission
distance over 1000 kilometers.
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Methods

Combined quantum state evolution under beam splitting attack
Here we provide the description of states’ evolution in the case of the
beam splitting attack. We will use that (a) an amplifier transforms pure
coherent state into a mixture of the coherent states,

|γ〉 →

∫
d2α P(α, γ,G) |α〉 〈α| , (7)

where P(α, γ,G) is given by Eq. (3) and integration is performed over
the complex plane with d2α ≡ dRe(α) dIm(α); and that (b) formally, a
sequence of losses and amplifications can be reduced to a single pair of
the loss and amplification quantum channels—see Supplementary Note
3 for details.

The initial density matrix of Alice’s random bit (A) and the corre-
sponding signal (S) is given by

ρ̂i
AS =

1
2
|0〉 〈0|A ⊗ |γ0〉 〈γ0|S +

1
2
|1〉 〈1|A ⊗ |γ1〉 〈γ1|S . (8)

Just before the signal passes the beam splitter, the state of the AS system
is

ρ̂→�AS =
1
2

∑
a=0,1

|a〉 〈a|A ⊗
∫

d2α · P(α,
√

T1γa,G1) · |α〉 〈α|S , (9)

where we use Eq. (7) to describe the state of sequentially attenuated
and amplified signal, and T1 and G1 are, respectively, the transmission
probability and amplification factor of the effective loss and amplifica-
tion channels that are equivalent to the sequence of amplifications and
losses prior to the beam splitter, see Supplementary Note 3, particularly
Eq. (58). Just after the signal passes the beam splitter, the state of the
joint system of Alice’s random bit, the signal travelling to Bob and the
signal component seized by Eve (E) is described by

ρ̂�→ASE =
1
2

∑
a=0,1

|a〉 〈a|A ⊗
∫

d2α · P(α,
√

T1γa,G1)

× |
√

1 − rEα〉 〈
√

1 − rEα|S ⊗ |
√

rEα〉 〈
√

rEα|E , (10)

where rE is the fraction of signal stolen by Eve. After the signal passes
the second series of losses and amplifiers and right before it is measured
by Bob, the state of the joint system is

ρ̂→Bob
ASE =

1
2

∑
a=0,1

|a〉 〈a|A ⊗
∫

d2α · P(α,
√

T1γa,G1)

×

(∫
d2β · P

(
β,

√
(1 − rE)T2α,G2

)
· |β〉 〈β|S

)
⊗ |
√

rEα〉 〈
√

rEα|E , (11)

where we again utilize Eq. (7) to describe the evolved signal state, and T2

and G2 are the effective transmission probability and amplification factor
of the region between the beam splitter and Bob, see Eq. (59) in Supple-
mentary Note 3. Bob receives the signal state, measures it and, together
with Alice, discards the outcome if it is inconclusive. The probability
that Bob’s measurement outcome is b = {0, 1} given that Alice’s sent bit
is a = {0, 1} can be written as

p(b|a) = trASE

[(
2 · |a〉 〈a|A ⊗ Êb ⊗ 1̂E

)
ρ̂→Bob

ASE

]
, (12)

where Êb is given by Eq. (1a) or (1b) depending on the encoding scheme,
and trASE[. . . ] is the trace over the ASE system. The probability that Bob
gets a conclusive outcome if Alice sends bit a is

p(X|a) = p(0|a) + p(1|a). (13)

Equation (2) follows from Eq. (11) after applying measurement operators
to the signal subsystem, discarding sum components associated with the
inconclusive outcomes, and renormalizing.

0

1
2a

WDM

Pumping
diode

Doped
fiber

Main
fiber

Main
fiber

bFigure 3 | Energy diagram of the light amplification in the erbium-doped
fiber section. Pumping radiation excites erbium ions from the ground state 0
into the 2nd energy level. Shortly after, ions drop to the metastable level 1.
The times of the relaxation from 2 to 1 and from 1 to 0 are around 20µs and
10 ms respectively. The incident photons stimulate the transition 1 → 0 which
results in the coherently synchronized radiation of additional photons at the same
wavelength.

Privacy amplification
Privacy amplification can be realized through applying the universal
hashing method 41, which requires the users to initially agree on the fam-
ily H of hash functions. At the privacy amplification stage 38, 50, 51, they
randomly select such a function h : {0, 1}pXL → {0, 1}Lf ∈ H that maps
the raw key of length pXL to the final key of length Lf. If Eve is estimated
to know pXL · Ĩ(A,E) bits of the raw key, the letter must be taken in ac-
cord with Eq. (6). FamilyH can, for example, span Toeplitz matrices 52:
a random binary Toeplitz matrix T̂ with pXL rows and Lf columns trans-
lates the binary vector representation of the raw key v into the vector k
representing the final key, k = T̂ · v.

Optical amplification principle
The principle of optical amplification is illustrated in Fig. 3. Upon the
absorption of the pumping radiation, erbium ions transit from the ground
state 0 into the short-lived state 2, from which they non-radiatively relax
to the metastable state 1. The relaxation times for the transitions 2 → 1
and 1 → 0 are around 20 µs and 10 ms, respectively. The passing light
stimulates the transition from the state 1 to state 0 which leads to the
coherently synchronized photon emission.

Physical loss control precision
Assume that Bob is equipped with an optical filter with a very narrow
wavelength band which blocks noise from the secondary light modes (for
details on this additional noise, see Supplementary Note 3). Assume also
that all amplifiers are positioned equidistantly, each having amplification
factor G = 1/T with T being the transmission probability of the line
section between two neighboring amplifiers.

Approaching an amplifier, the test pulse comprising n photons is
attenuated down to Tn photons. The amplifier restores the number of
photons back to n but adds noise. The photons in the pulse follow the
Poisson statistics; thus, the photon noise just before the amplifier can
be taken as a square root of the input signal

√
Tn. The noise is ampli-

fied by factor G as well, so after a single amplifier the noise is G
√

Tn.
Coming through a sequence of M amplifiers which add fluctuations in-
dependently, the total noise raises by the factor

√
M. The noise at Bob’s

end is thus δnB ' G
√

MTn =
√

GMn. The minimum detectable leakage
can be calculated as rmin

E ∼ δnB/n =
√

MG/n. Our qualitative estimates
match with the rigorous calculations in Supplementary Note 3.
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Supplementary Information
NOTE 1. Natural losses
In this note, we discuss the unfeasibility of eavesdropping on the nat-
ural losses occurring due to the scattering of photons in optical fiber.
Here we explore quantum considerations analogous to those that serve to
derive the Second Law of Thermodynamics 29–31. In quantum cryptog-
raphy, the thermodynamic considerations should focus on the collection
of optical states traveling through a lossy fiber. In the standard telecom-
munication scenario, with the signal power of around 10 mW and a pulse
duration of 1 ns, each light pulse contains about 108 photons, with stag-
gering leaks of about 103 photons per meter that can be measured outside
of the fiber. This scenario implies that the system is clearly not isolated,
and, through the measurement of leaked photons, Eve can decrease the
system’s entropy—a process which, in accordance with Shannon’s defi-
nition of entropy, is equivalent to extracting information.

On the other hand, in a relatively weak signal region of our choice
with 104 to 105 photons or less (which is still enough for the optical
amplification), the system can be considered quasi-isolated since only
a small number of photons are lost from each pulse. Eve’s attempt to
measure the leaked parts of a signal’s wave function and obtain informa-
tion about the sent bit would decrease the entropy. However, extracting
a substantial amount of information from leaked photons requires Eve to
operate and observe multitudes of degrees of freedom, which, as we will
demonstrate in the next section, is unfeasible.

1.1 Required length of the eavesdropping device
In assessing the feasibility of the potential eavesdropping on the natural
losses, we consider a scheme in which logical bits are encoded into opti-
cal coherent states |γ0〉 and |γ1〉 with different photon numbers µ0 = |γ0|

2

and µ1 = |γ1|
2. Let the signal pulses have the duration of 1 ns (0.2 m

long) and comprise 104 photons on average. The optimal values for µ0

and µ1 on a 1000 km line, as determined by our simulations (see the
main text), are 9000 and 11,000, respectively. To eavesdrop on the ho-
mogeneously spread natural losses, an eavesdropper would be forced to
undertake measurements along various segments of the fiber, possibly us-
ing single-photon detectors. However, as our calculations indicate, such
a method would be impractical in terms of the sheer length required to
successfully determine the value of any given bit.

The natural losses coefficient of a fiber section of length l can be
calculated as

rl = 1 − 10−ξ·l, (14)

where ξ is the decay constant. The number of photons lost from a wave
packet containing µa photons is given by:

µ(a)
E = µa · rl. (15)

The lower index E denotes that the photons can be seized by an eaves-
dropper, the upper index a represents the corresponding random bit
value.

The observable (positive operator-valued measure, or POVM) de-
scribing the single-photon detector includes two projective operators cor-
responding to two possible outcomes:

M single photon =

M̂0 = |0〉 〈0| , M̂click =

+∞∑
n=1

|n〉 〈n|

 . (16)

The probability of the detector’s “click” conditional to the bit value a is
determined by the Poisson statistics of Eve’s coherent state

qa ≡ p (click | a) = Tr
(
M̂click · |

√
rlγa〉 〈

√
rlγa|

)
= 1 − Tr

(
M̂0 · |

√
rlγa〉 〈

√
rlγa|

)
= 1 −

∣∣∣〈0| √rlγa〉
∣∣∣2

= 1 − e−|
√

rlγa |
2

= 1 − e−µ
(a)
E . (17)

According to the measurement outcomes, Eve makes bit decisions. Prob-
ability distribution of measurement results can be considered as Bino-
mial which variance is qa(1 − qa). Carrying out N independent measure-
ments of sequential parts of the line, the combined variance is a sum of
variances of each individual measurement. Thus, the expression for the
square root of the variance takes form

δna =
√

N · qa(1 − qa). (18)

Bits zero and one produce different distributions, the distance between
the maximums of these distributions can be calculated as

∆n = N ·
∣∣∣µ(1)

E − µ
(0)
E

∣∣∣ . (19)

In order to obtain significant amount of information Eve needs the dis-
tance between the maximums of the distributions to exceed the sum of
their standard derivations, i.e. the notional critical condition can be writ-
ten as

∆n = δn0 + δn1 ⇒

N ·
∣∣∣µ(1)

E − µ
(0)
E

∣∣∣ =
√

N ·
( √

q0(1 − q0) +
√

q1(1 − q1)
)
. (20)

Then, supposing that each of the detectors covers a piece of fiber of the
length equal to the length of the considered pulses, i.e. l = 0.2 m, and
taking ξ = 0.02 km−1, which is a common value for the single-mode
optical fiber, the required number of detectors

N =

( √
q0(1 − q0) +

√
q1(1 − q1)

)2∣∣∣µ(1)
E − µ

(0)
E

∣∣∣2 ' 103. (21)

Combining all measured pieces, we obtain the total length of the whole
detection device N · l ' 103 · 0.2 m = 200 m.

Moreover, not all the leakages can be measured in reality: some of
the scattered photons transform to different modes propagating along the
fiber and do not radiate outwards. Along with that, to measure a leaked
part of the signal with the single photon detector, it is necessary to isolate
the measured part of the line from the external radiation and concentrate
the leaked photons to the cryogenic setup. The effects combined reduce
the number of photons available to Eve approximately by an order of
magnitude. These physically motivated assumptions lead to enormous
lengths of detection devices even in the case of higher intensities (for
instance, µ0,1 ∼ 105, which turned out to be optimal for the 40 000 km
line – see Numerical Simulations). It is important to acknowledge that
while the aforementioned attacks utilizing scattering losses are hardly re-
alistic, one can employ methods of protection that can counteract them
as well. These include utilizing specialized cable design enabling the
controlled dissipation of scattering losses (described in Note 2), utilizing
lower numbers of photons in pulses, and implementing advanced encod-
ing schemes that utilize the phase or shape of the pulses.

1.2 Precise estimation of Eve’s information
To estimate the precise amount of information that Eve can get from
the N individual measurements of natural losses with single photon de-
tectors, we calculate the mutual information between Alice’s sent bit
a ∈ {0, 1} and Eve’s measurement results. The conditional probabilities
of obtaining n “clicks” can be written as

p(n|a) = Cn
N · q

n
a · (1 − qa)N−n, (22)

where Cn
N = N!

n!(N−n)! is a binomial coefficient and qa is the click probabil-
ity in the individual measurement in the case where the sent bit value is
a. The expression for the mutual information is determined by the joint
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probability distribution p(n, a) = p(n|a) · p(a):

I
(
A : E(N)

ind

)
=

N∑
n=0

1∑
a=0

p(n, a) · log2

(
p(n, a)

p(n) · p(a)

)

=

N∑
n=0

1∑
a=0

1
2

p(n|a) · log2

(
p(n|a)

p(n|0) + p(n|1)

)

= 1 −
1
2

N∑
n=0

(
p(n|0) + p(n|1)

)
· h2

(
p(n|0)

p(n|0) + p(n|1)

)
. (23)

The dependence of the Eq. (23) on the total length of the detection device
is depicted in Fig. 4. Was the device’s length equal to 200 m, the mutual
information I

(
A : E(N)

ind

)
would almost reach 0.5, meaning that Eve would

know half of the raw shared key—these results are in a good agreement
with the preliminary estimations from the previous section. While in
the case of more feasible lengths (a couple of meters, for example), the
information Eve can obtain is of the order of 10−2 bit. One can note that
the Eq. (23) does not depend on whether phase randomization is applied
or not, since the probabilities are determined only by photon numbers
(for details see Note 4).

1.3 Ideal photon number measurement
Next, we consider collective photon number measurement over the whole
N pieces of the fiber which can be conducted after gathering all the scat-
tered photons at one ideal detector. The corresponding observable in
terms of the POVM effects can be expressed as projectors on the Fock-
states

M photon number =
{
M̂n = |n〉 〈n|

}+∞

n=0
. (24)

The probability of obtaining k photons is determined by the average num-
ber of all scattered photons in a signal corresponding to sent bit a

p(k|a) = e−N·µ(a)
E ·

(
Nµ(a)

E

)k

k!
(25)

Almost analogously to the previous paragraph, one can calculate the mu-
tual information as

I
(
A : E(N)

col

)
= 1−

1
2

+∞∑
k=0

(
p(k|0) + p(k|1)

)
· h2

(
p(k|0)

p(k|0) + p(k|1)

)
. (26)

The only difference from the Eq. (23) is that upper limit of the summation
is now infinity. As depicted in the Fig. 4, the informational advantage of
Eq. (26) over single-photon measurements is insignificant.

1.4 The Holevo bound
To build an upper-bound on the information that Eve may extract from
the scattered photons, we calculate the Holevo quantity, which for an
ensemble of quantum states E =

{(
1/2, ρ̂(0)

)
,
(
1/2, ρ̂(1)

)}
is defined as

χ (E) = S
(

1
2
ρ̂(0) +

1
2
ρ̂(1)

)
−

1
2

S
(
ρ̂(0)

)
−

1
2

S
(
ρ̂(1)

)
, (27)

where S (ρ̂) = −Tr
(
ρ̂ · log2 ρ̂

)
is von Neuman entropy. Without phase

randomization, Eve has to distinguish between pure coherent states of
the form

ρ̂(a) = |
√

rlNγa〉 〈
√

rlNγa| . (28)

Since entropy of a pure state is zero, the Holevo quantity is just the en-
tropy of the average ensemble’s state

χ (E) = S
(

1
2
ρ̂(0) +

1
2
ρ̂(1)

)
= h2

(
1
2
−

1
2

∣∣∣∣〈√rlNγ0 |
√

rlNγ1〉

∣∣∣∣)
= h2

(
1
2
−

1
2

exp
[
−

1
2
· rlN (γ1 − γ0)2

])
, (29)
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Figure 4 | The information Eve can obtain from natural losses as a function
of the overall length of the detection device. The cyan line corresponds to
individual measurements (by single-photon detectors) as determined by Eq. (23).
The orange line depicts Holevo bound with phase randomization (PR) according
to Eq. (31). The black line is for the Holevo bound (no PR) in the absence of PR
Eq. (29).

where h2(x) = x · log2(x)− (1− x) · log2(1− x) is binary entropy. Applying
phase randomization transforms the ensemble of pure coherent states into
the mixtures of Fock states

EPR =

{(
1
2
, ρ̂(0)

PR

)
,

(
1
2
, ρ̂(1)

PR

)}
,

ρ̂(a)
PR =

1
2π

2π∫
0

dϕ |
√

rlNγa · eiϕ〉〈
√

rlNγa · eiϕ| =

+∞∑
k=0

p(k|a) · |k〉〈k| ,
(30)

where p(k|a) is defined in Eq. (25). Now ensemble’s states are diagonal,
thus, quantum entropy is replaced with classical Shannon entropy

χ (EPR) = S
(

1
2
ρ̂(0)

PR +
1
2
ρ̂(1)

PR

)
−

1
2

S
(
ρ̂(0)

PR

)
−

1
2

S
(
ρ̂(1)

PR

)
= H

({ p(k|0)+p(k|1)
2

}+∞

k=0

)
−

1
2

[
H

({
p(k|0)

}+∞

k=0

)
+H

({
p(k|1)

}+∞

k=0

)]
.

(31)

Carrying out trivial mathematical transformations, one may conclude
that the Holevo quantity for the phase randomization case Eq. (31) coin-
cides with the information obtained in ideal photon number measurement
Eq. (26). Figure 4 also shows that the Holevo quantity for pure coherent
states Eq. (29) appeared to be much higher than considered photon num-
ber measurements, meaning that Eve may potentially utilize information
about the phase to conduct more effective measurement. It prompts le-
gitimate users to implement phase randomization in their QKD scheme.

NOTE 2. Controlled dissipation of natural losses and ad-
vanced line tomography
In this note, we turn our attention to a particular cable design and ad-
vanced line tomography that transforms scattered photons into heat in a
controlled manner. This method effectively precludes Eve from exploit-
ing the natural losses.

The cable design transforming scattering losses into heat is sketched
in Fig. 5. The inner fiber core carrying the information light pulses is
surrounded by a cladding with a smaller refractive index and then by
the dissipative cladding made out of metal or metal-doped silica. The
dissipative cladding screens the scattering losses escaping the fiber core
since the scattered wave undergoes the inelastic secondary scattering and
transforms into heat. The resulting dissipative thermal losses cannot be
deciphered even in principle. The dissipative cladding is, in turn, coated
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Figure 5 | Cable design. The cable namely includes (i) the inner core for infor-
mation transmission and physical loss control, (ii) dissipative cladding converting
scattering losses from the inner core into heat and completely destructing their
information contents, and (iii) outer core for monitoring line integrity.

by the second standard refractive cladding layer, surrounded by an outer
hollow fiber core and the outside refractive cladding. The outer core en-
ables legitimate users to perform constant reflectometry and transmittom-
etry, thus exercising control over the dissipation of the scattering losses.
To remove the dissipative cladding for collecting the scattering losses or
to create an artificial leakage from the inner core, Eve first needs to get
through the outer core. The action, however, will not go unnoticed be-
cause of the permanent Alice and Bob’s updating of the outer core’s loss
profile. Finally, the structure is surrounded by an outer jacket which may
include a strengthening layer. To mitigate local losses on fiber connec-
tions, they should be made spliced.

Physical loss control allows for a quantitative estimate and localiza-
tion of any damage inflicted upon the outer or inner cores, see an ex-
perimentally obtained example of a reflectogram in Fig. 6, presenting the
dependence of the backscattered power upon the distance to the scat-
tering point: the linear regions represent homogeneous scattering along
the line, while the sharp peaks or drops correspond to the local losses
at fiber contacts and bends. As opposed to the regular optical fiber, this
specific line design eliminates the possibility of an undetected collection
of scattering losses. Any local intrusion brings Eve a negligible number
of scattered photons; then, to collect a sufficient amount of the scattering
losses, she needs to breach a large section of the controlled outer core,
and before it is done, the legitimate users terminate the protocol. Yet, our
approach—particularly, the protocol outlined in the main text—resists a
significant signal leakage fraction without the necessity of terminating
transmission at first sight of the channel breach. Instead, the legitimate
users adapt the encoding and post-processing parameters based on the
evaluation of the fraction of the signal possibly leaked to Eve, the outer
and inner cores being monitored separately. Importantly, although the
inner core of the line is controlled only at step 1 of the protocol, legiti-
mate users must control the outer core at all steps of the protocol. The
users can count scattering losses that leaked from the breached outer core
region as stolen by Eve and then act accordingly, i.e., adapt or terminate
the protocol. In other words, the scattering losses escaping the breached
outer core region can be equated to the artificial leakages directly from
the inner core. If the outer core is breached at the same spot where the
inner core has an irredeemable local leakage, such as a bend, the users
must take that this leakage is seized by Eve.

NOTE 3. Signal amplification
In this note, we address optical amplification using the formalism of
quantum channels. We develop a mathematical representation of a se-
quence of optical amplifiers, which we later use for modeling a general
beam splitter attack on the transmission. Using this representation, we
calculate the amplification-induced noise.

3.1 Amplification in doped fibers and losses
In Er/Yt doped fiber, the photonic mode propagates through the inverted

atomic medium. To keep the medium inverted, a seed laser of a differ-
ent frequency co-propagates with the signal photonic mode in the fiber
and is then filtered out at the output by means of wavelength-division
multiplexing (WDM). The interaction between the inverted atom at the
position z and propagating light field mode â is given by the Hamiltonian
in the rotating wave approximation

Ĥint = iκ
N∑

n=1

(
â†σ̂(n)

− − âσ̂(n)
+

)
= iκ

(
â†Ŝ − − âŜ +

)
, (32)

σ̂(n)
− = |g〉 〈e|n , σ̂(n)

+ = |e〉 〈g|n , Ŝ ± =

N∑
n=1

σ̂(n)
± , (33)

where we enumerate the atoms by index n, with N being the overall num-
ber of atoms in the medium at the position z (N � 1), κ is the interaction
constant. Here, each medium’s atom is assumed to be a two-level system
with its basis states |g〉 and |e〉 denoting the ground and excited states,
respectively; σ̂(n)

± is the n-th atom raising/lowering operator, while Ŝ ± is
the collective raising/lowering operator, that shifts the number of excited
atoms in the medium by one. To simplify further calculations, we uti-
lize the Holstein-Primakoff 53 transformation which provides mapping
between the collective (Ŝ +, Ŝ −) and boson (b̂, b̂†) operators

Ŝ + ≈
√

Nb̂, Ŝ − ≈
√

Nb̂†,
[
b̂, b̂†

]
= 1. (34)

The initial state of fully inverted atomic medium is |e〉1⊗ |e〉2 ...⊗ |e〉N (all
N atoms are in the excited state). The Holstein-Primakoff transformation
maps it to the vacuum |0〉b (i.e. no excitations in the boson mode b). The
amplifier’s medium with m atoms in the ground state is now described
by the state with m excitations |m〉b that obeys the standard annihilation
and creation operations

b̂ |m〉b =
√

m |m − 1〉b ,

b̂† |m〉b =
√

m + 1 |m + 1〉b .
(35)

With that we have
Ĥint ≈ iκ

√
N

(
â†b̂† − âb̂

)
. (36)

The evolution operator of a propagating photon is given by

Ûg = e−iĤintt/~ = eg(â† b̂†−â b̂), (37)

where g = κ
√

Nt/~ and t is effective time of interaction between the pho-
tonic mode and atomic medium. Besides considering the channel acting
on the propagating state, we also have to consider a conjugate channel
acting on the creation operator â (it will be needed in the following crypt-
analysis)

Amp∗G[â] = Û†g â Ûg = cosh(g)â + sinh(g)b̂†. (38)

In practice, the performance of erbium-doped fiber amplifiers (EDFAs)
suffers from technical limitations, which arise in addition to the ampli-
fication limits on added quantum noise. These limitations are mainly
caused by two factors: (i) the atomic population may be not completely
inverted throughout the media, (ii) there may be coupling imperfection
between the optical mode and the doped fiber section or main part of the
fiber. We will imply that these factors are accounted for in the loss chan-
nel prior to the amplification channel, as shown in Ref. [54].

3.2 P-function and its evolution under amplification
Consider a single photonic mode with bosonic operators â and â† acting
in the Fock space. To understand the effect of the amplification on the
bosonic mode state, we will use the P-function formalism allowing to
express any density operator as a quasi-mixture of coherent states:

ρ̂ =

∫
d2αP(α) |α〉 〈α| , (39)
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Figure 6 | An exemplary plot obtained with the optical time-domain reflectometer. The device sends the high-intensity test pulses into the fiber and registers
its reflections providing the dependence of the backscattered power on the distance to the scattering point defined by the time of the signal’s return. Every particular
type of fiber discontinuity, whether it is physical contact, bending, or splice, can be identified by its own unique reflectographic pattern, as demonstrated in the inset
plots. The appearance of peaks signifies the excessive scattering which happens, for instance, at the physical connectors where the signal undergoes the Fresnel
reflection. The right noisy tail of the main plot corresponds to the end of the backscattered signal. The measurements are carried out with a 2µs 1550 nm pulse
laser with a power up to 40 mW. The experimental data is averaged over 16, 000 measurements.

where d2α ≡ dRe(α) dIm(α) and the quasi-probability distribution P(α)
is not necessarily positive. For a given state with the density matrix ρ̂ the
P-function can be written as

P(α) = tr : δ(â − α) : ρ̂, (40)

where

: δ(â − α) :=
1
π2

∫
d2β eαβ

∗−α∗βeβâ†e−β
∗ â, (41)

see Ref. [55] for details. Phase-amplification is described by a quantum
channel given by

AmpG=cosh2(g) : ρ̂ 7→ AmpG[ρ̂] = trb

[
Ûg ρ̂ ⊗ |0〉 〈0|b Û†g

]
, (42)

where Ûg is defined by Eq. (37), g is the interaction parameter character-
izing the amplifier, G = cosh2(g) is the factor by which the intensity of
the input signal is amplified, and annihilation operator b̂ corresponds to
the auxiliary mode starting in the vacuum states. see e.g. [56].

To see how the P-function of a state transforms under the optical
amplification, consider a simple situation where the input signal is in
the pure coherent state |γ〉 〈γ| with the corresponding initial P-function
Pi(α) = δ(α − γ) (delta-function acting on the complex plane). After the
amplification the P-function becomes

P(α, γ, g) = tr : δ(â − α) : AmpG
[
|γ〉 〈γ|

]
. (43)

Bearing in mind the canonical transformation of the amplifier channel
from Eq. (38), we get Eqs. (3) and (7) from the main text: given a pure
coherent input state (with complex amplitude γ), the output state is a

LossT0AmpG1

LossT0LossT2
LossT0LossT

LossT0AmpG2
LossT0AmpG

LossT0AmpG � LossT0AmpG

LossT0AmpG LossT0LossT LossT0AmpG LossT0LossT LossT0LossTo
LossT0AmpGo

LossT0LossT � LossT0LossT

LossT0LossT1

a

b

c

Figure 7 | Compositions of loss and amplification channels and their equiv-
alent representations. a Two loss or amplification channels can be reduced to
one. b Loss and amplification channels can be effectively rearranged. c A series
of losses and amplifiers can be reduced to one pair of loss and amplification.

mixture of normally distributed coherent states; the mean complex am-
plitude is

√
Gγ and the standard deviation is (G − 1)/

√
2:

P(α, γ, g) =
1

π(G − 1)
exp

− |α − √Gγ|2

G − 1

 . (44)

3.3 Composition of amplifiers and losses
In our quantum key distribution (QKD) protocol, the amplification is
used to compensate the fiber losses. Long-distance transmission requires
a cascade of amplifiers, in which case the signal’s evolution is determined
by a sequence of multiple loss and amplification channels. In this sec-
tion we prove that any such sequence can be mathematically reduced to
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a composition of one loss and one amplification channels. The canonical
transformation of the loss channel is

Loss∗T [â] = ˆ̄U†T â ˆ̄UT =
√

Tâ +
√

1 − T ĉ,

T = cos2 λ,
(45)

where λ is the interaction parameter, T is the proportion of the transmit-
ted signal, the annihilation operator ĉ corresponds to the initially empty
mode which the lost photons go to, and ˆ̄Uλ = eλâ† ĉ−λâ ĉ† .

Statement 1. Two loss or amplification channels can be effec-
tively reduced to one.

First, we show that a pair of loss or amplification channels can be
effectively reduced to the one channel (Fig.7a). To that end, let us
consider two consequent loss channels:(

LossT2 ◦ LossT1

)∗
[â] =

√
T1T2â +

√
T1(1 − T1)ĉ1 +

√
1 − T2ĉ2

=
√

T1T2â +
√

1 − T1T2ĉ, (46)

where we defined operator ĉ

ĉ =

√
T2(1 − T1)ĉ1 +

√
1 − T2ĉ2

√
1 − T1T2

, (47)

acting on the vacuum state and satisfying the canonical commutation
relation [ĉ, ĉ†] = 1. The last expression of Eq. (46) represents the action
of one loss channel with the effective parameter T = T1T2

LossT2 ◦ LossT1 = Loss(T=T1T2). (48)

The same reasoning applies to amplifiers

AmpG2
◦ AmpG1

= AmpG=G1G2
. (49)

Statement 2. Loss and amplification can always be represented as a
composition where loss is followed by amplification.

Let us show that the composition of an amplification channel followed
by a loss channel can be mathematically replaced with the pair of cer-
tain loss and amplification channels acting in the opposite order (Fig.7b).
Firstly, let us consider the transformation corresponding to the amplifi-
cation followed by the loss(

LossT ′ ◦ AmpG′
)∗ [â] = Û†

g′
ˆ̄U†
λ′

â ˆ̄UλÛg

=
√

T ′G′â +
√

1 − T ′ĉ +
√

T ′(1 −G′)b̂†. (50)

In the case of the opposite order we obtain

(AmpG ◦ LossT )∗[â] = ˆ̄U†λÛ†g â Ûg
ˆ̄Uλ =

=
√

TGâ +
√

G(1 − T )ĉ +
√

G − 1b̂†. (51)

Considered transformations become identical when the parameters are
related as

LossT ′ ◦ AmpG′ = AmpG ◦ LossT ,

T =
G′T ′

(G′ − 1)T ′ + 1
,

G = (G′ − 1)T ′ + 1.

(52)

In other words, the two types of channels ”commute” provided that the
parameters are modified in accord with these relations. In particular,
the parameters in the equation above are always physically meaningful
G ≥ 1, 0 ≤ T ≤ 1, meaning that we can always represent loss and
amplification in form of a composition where loss is followed by
amplification (the converse is not true).

Statement 3. A series of losses and amplifiers can be effectively

reduced to one pair of loss and amplification.

Let us finally show that the sequence of loss and amplification channels
can be mathematically represented as one pair of loss and amplification
(Fig.7c). Consider the transformation

ΦM = (AmpG ◦ LossT )◦M , (53)

corresponding to the series of M identical loss and amplification chan-
nels, for which we want to find a simple representation. According to
Statement 2, we can effectively move all losses to the right end of the
composition, i.e., permute the channels in such a way that all the losses
act before amplification. Every time the loss channel with the transmis-
sion probability T(i) is moved before an amplifier with the amplification
factor G(i), the parameters are transformed in accord with Eq. (52):

T(i) 7→ T(i+1) =
G(i)T(i)

(G(i) − 1)T(i) + 1
,

G(i) 7→ G(i+1) = (G(i) − 1)T(i) + 1.
(54)

In our sequence we can pairwise transpose all neighboring losses with
amplifier (starting with the first amplifier and the second loss). After
repeating this operation M − 1 times, bearing in mind the Statement 1,
we find that

ΦM = AmpG(0)
◦ AmpG(1)

◦ · · · ◦ AmpG(M−1)

◦LossT(M−1) ◦ LossT(M−2) ◦ · · · ◦ LossT(0) = AmpG◦ ◦ LossT◦ ,
(55)

where

T◦ =

M−1∏
i=0

T(i), G◦ =

M−1∏
i=0

G(i), (56)

i.e., the series of losses and amplifiers is equivalent to the loss channel
of transmission T◦ followed by the amplifier with amplification factor
G◦. Note now that the value η ≡ G(i)T(i) = GT cannot be changed by
permutations. Let us define

F(i) = (G(i) − 1)T(i) + 1, (57)

and bear in mind that

F(i+1) = (G(i+1)−1)T(i+1) +1 =
(F(i) − 1)

F(i)
TG +1 = η

(
F(i) − 1

F(i)

)
+1. (58)

We can write
T(i+1) =

TG
F(i)

, G(i+1) = F(i), (59)

and

G◦ = G
M−2∏
i=0

F(i), T◦ =
T (TG)M−1∏M−2

i=0 F(i)
=

(TG)M

G◦
. (60)

Let us find the explicit form of G◦ and T◦ by solving the recurrence rela-
tion. Define An and Bn through the relation

F(n−1) =
An

Bn
. (61)

Then

F(n+1) =
(η + 1)F(n) − η

F(n)
=

(η + 1)An+1 − ηBn+1

An+1
. (62)

It follows from Eqs. (61) and (62) that Bn+1 = An and

An+1 = (η + 1)An − ηBn = (η + 1)An − ηAn−1. (63)

We see that the solution of this equation has a form

An = c1 + c2η
n, (64)

where c1 and c2 are the constants, which are determined by F0 = (G −
1)T + 1: we take A1 = (G − 1)T + 1 and A0 = 1, and obtain

c1 =
T − 1

GT − 1
, c2 =

(G − 1)T
GT − 1

. (65)
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Notably, the product ΠM−2
n=0 F(n) appearing in the final expression becomes

relatively simple

M−2∏
n=0

F(n) =
(G − 1)(GT )M + G(T − 1)

G(GT − 1)
, (66)

and we have

ΦM = (AmpG ◦ LossT )◦M = AmpG◦ ◦ LossT◦ ,

G◦ =
(G − 1)(GT )M + G(T − 1)

GT − 1
,

T◦ =
(TG)M

G◦
.

(67)

The case of TG = 1 is particularly interesting as the average photon
number of the transmitted signal remains preserved (which is different
from the total output photon number as it has the noise contribution). In
the limit G → 1/T we have

G◦ = G(M(1 − T ) + T ),

T◦ =
T

M(1 − T ) + T
.

(68)

3.4 Effective model of the line
We consider how Eve performs the beam splitter attack seizing the part
of the signal somewhere along the optical line as shown in Fig.8a. If
the signal intensity incident to the beam splitter is 1, then intensity rE

goes to Eve, and 1 − rE goes to Bob’s direction. The proportion of the
transmitted signal on the distance d between two neighbouring amplifiers
is determined by

T = 10−ξ·d, G =
1
T
, (69)

where ξ = 0.02 km−1 is the parameter of losses typical for the optical
fibers and G is amplification factor of each amplifier. Let DAB(AE) be the
distance between Alice and Bob (Alice and Eve), then the numbers of
amplifiers before and after the beam splitter M1 and M2 are given by

M1 = DAE/d,

M2 = (DAB − DAE)/d.
(70)

According to Statement 3, the scheme can be simplified by reducing the
losses and amplifications before and after the beam splitter to two loss
and amplification pairs with the parameters {T1, G1} and {T2, G2} respec-
tively (Fig. 8b)

G1 = G (M1(1 − T ) + T ) =
(
10ξ·d − 1

)
·

DAE

d
+ 1, T1 =

1
G1

, (71)

G2 = G (M2(1 − T ) + T ) =
(
10ξ·d − 1

)
·

DAB − DAE

d
+ 1, T2 =

1
G2

. (72)

3.5 Fluctuations
Let us calculate the fluctuation of the number of photons in a pulse after
it passes through a sequence of M loss regions and amplifiers. Let |γ|2 be
the input average photon number; as follows from Eqs. (39) and (44), the
average number of photons n in the output signal is

n = 〈â†â〉 = |γ|2 + G◦ − 1, (73)

where G◦ is given by Eq. (68). The variance of the output photon number
is

δn =
√
〈(â†â)2〉 − (〈â†â〉)2

=
(
M(G − 1)(M(G − 1) + 1) + |γ|2(2M(G − 1) + 1)

)1/2
(74)
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Figure 8 | Schematic representation of a beam splitter attack. a Alice and
Bob are connected by a quantum channel comprised of the composition of am-
plifiers and losses. Eve conducts a beam splitter attack seizing a part of the
signal somewhere along the optical line. Thus, she divides the line into two
parts. b An equivalent scheme: the losses and amplifiers before and after the
point of Eve’s intervention are represented by two pairs of loss and amplification
channels defined by the parameters {T1, G1} and {T2, G2} respectively.

Note that even if |γ|2 = 0, n and δn are still non-zero. This particularly
means that on top of the mode of interest, amplification also generates
noise in other modes. Assume that Bob has an optical filter with band-
width ∆ν on which the amplification factor is constant, and the detection
time is τ � 1/∆ν. Then, the average number of photons due to noise
from the secondary modes is

nnoise ' 2[G(M(1 − T ) + T ) − 1]τ∆ν, (75)

where factor 2 is due to two possible polarizations. We will thoroughly
address the issue of noise at different optical filtration regimes in our
forthcoming experimental publication.

In the limit |γ|2 � GM � 1 for the ideal optical filter transmitting
only the signal mode we get

δn '
√

nGM. (76)

Provided that there are no other sources of noise, this quantity deter-
mines the precision of the physical loss control: if the test pulse carries
n photons, the minimum detectable leakage is

rmin
E ∼

√
MGn/n =

√
MG/n (77)

The result coincides with the estimate given in Methods.

NOTE 4. Photon number encoding
This note is devoted to the detailed description of the photon number
encoding scheme in the context of the beam splitter attack. We derive
the respective amounts of information that the users and Eve know about
the transmitted signal. We also address correlations due to the optical
amplification between Eve’s and Bob’s quantum states.

4.1 Phase randomization
In the photon number encoding, we assume the phase of each signal
pulse being completely random 57, and unknown both to the eavesdrop-
per and the users. The phase alteration between consecutive signal pulses
may be achieved through rebooting the light source after each pulse, or
with an additional randomly acting phase modulator. We take that Bob’s
performs solely the energy measurement of the incoming states without
measuring the phases, so Alice does not send the phase reference. In
this case, Eve cannot measure the phases either, and the combined sys-
tem of Alice’s random bit (A), the signal incident to Bob (S) and Eve’s
seized state (E) can be expressed as a mixture of states averaged over all
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possible phases,

〈
ρ̂→Bob

ASE

〉
ϕ

=
1

2π

2π∫
0

dϕ
[
1
2

∑
a=0,1

|a〉 〈a|A ⊗
∫

d2α P(α,
√

T1eiϕγa,G1)

×

(∫
d2β P

(
β,

√
(1 − rE)T2α,G2

)
· |β〉 〈β|S

)
⊗ |
√

rEα〉 〈
√

rEα|E

]
. (78)

It follows from Eq. (44) that for any ϕ ∈ R we have P
(
x, yeiϕ, z

)
=

P
(
xe−iϕ, y, z

)
. We thus can write

〈
ρ̂→Bob

ASE

〉
ϕ

=
1
2

∑
a=0,1

|a〉 〈a|A ⊗
∫

d2α P(α,
√

T1γa,G1)

×

∫
d2β P

(
β,

√
(1 − rE)T2α,G2

)
×

1
2π

2π∫
0

dϕ |eiϕβ〉 〈eiϕβ|S ⊗ |
√

rEeiϕα〉 〈
√

rEeiϕα|E . (79)

4.2 Bob’s information
We first estimate the mutual information between Alice and Bob, which
is S (A) − S (A|B) in Eq. (6) of the main text. For that purpose, we
trace out Eve’s subsystem and consider a bipartite quantum state shared
between legitimate users right before Bob’s measurement is conducted〈
ρ̂→Bob

AS

〉
ϕ

= trE

〈
ρ̂→Bob

ASE

〉
ϕ

〈
ρ̂→Bob

AS

〉
ϕ

=
1
2

∑
a=0,1

|a〉 〈a|A ⊗
∫

d2α P(α,
√

T1γa,G1)

×


∫

d2β P
(
β,

√
(1 − rE)T2α,G2

)
·

1
2π

2π∫
0

dϕ |βeiϕ〉 〈βeiϕ|S

 . (80)

Given that Alice sent bit a ∈ {0, 1}, the probability that Bob’s measure-
ment outcome is b ∈ {0, 1, fail} can be written as

p(b|a) =

∫
d2α

π(G1 − 1)
· exp

−
∣∣∣α − √G1T1γa

∣∣∣2
G1 − 1

 ∫ d2β

π(G2 − 1)

× exp

−
∣∣∣β − √(1 − rE)G2T2α

∣∣∣2
G2 − 1

 · 1
2π

2π∫
0

dϕ 〈βeiϕ| Êb |βeiϕ〉 . (81)

The probability of finding k photons in the coherent state |βeiϕ〉 is defined
by the Poisson distribution and depends only on |β|

∣∣∣〈k|βeiϕ〉
∣∣∣2 =

|β|2ke−|β|
2

k!
= |〈k|β〉|2 , (82)

which particularly means that for any b 〈βeiϕ| Êb |βeiϕ〉 = 〈β| Êb |β〉. As
it follows from our numerical simulations, for the transmission distances
of the order of 1000 km and more, the information pulses |γa〉 should
comprise hundreds or thousands of photons. This enables us to replace
the Poisson distributions with the normal distribution, N

(
|β|2, |β|2

)
:

〈βeiϕ| Ê1 |βeiϕ〉 = 〈β| Ê1 |β〉 =

=

µ+θ4∑
k=µ+θ2

|β|2ke−|β|
2

k!
≈

µ+θ4∫
µ+θ2

dk√
2π|β|2

· exp

−
(
k − |β|2

)2

2|β|2


=

1
2

erf
 |β|2 − (µ + θ2)

√
2|β|

 − 1
2

erf
 |β|2 − (µ + θ4)

√
2|β|

 ; (83)

〈β| Ê0 |β〉 ≈
1
2

erf
 |β|2 − (µ − θ3)

√
2|β|

 − 1
2

erf
 |β|2 − (µ − θ1)

√
2|β|

 . (84)

Turning again to Eq. (81), we can change the integration order using Fu-
bini’s theorem. The analytical integration over d2α gives us

p(b|a) =
e−

γ2
a (1−rE)

G1+G2−2−rE(G1−1)

π (G1 + G2 − 2 − rE(G1 − 1))
·

+∞∫
0

d|β| |β| · e−
|β|2

G1+G2−2−rE(G1−1)

× 〈β| Êb |β〉

2π∫
0

dϕβ exp
 2

√
1 − rEγa|β| cosϕβ

G1 + G2 − 2 − rE(G1 − 1)

 , (85)

where ϕβ = arg(β). The rightmost integral can be reduced to the modified
Bessel function of the first kind:

2π∫
0

dϕβ exp
 2

√
1 − rEγa|β| cosϕβ

G1 + G2 − 2 − rE(G1 − 1)


= 2π · I0

(
2
√

1 − rEγa|β|

G1 + G2 − 2 − rE(G1 − 1)

)
. (86)

Thus, we have

p(b|a) =
2e−

γ2
a (1−rE)

G1+G2−2−rE(G1−1)

G1 + G2 − 2 − rE(G1 − 1)

+∞∫
0

d|β| |β| · 〈β| Êb |β〉

× I0

(
2
√

1 − rEγa|β|

G1 + G2 − 2 − rE(G1 − 1)

)
· e−

|β|2
G1+G2−2−rE(G1−1) . (87)

The mutual information between Alice and Bob after the post-selection
can be calculated as

I (A, B) ≡ S (A) − S (A|B) = S (A) + S (B) − S (AB)

= h2

∑
b=0,1

p(b|0)
2pX

 + h2

∑
a=0,1

p(0|a)
2pX

 +
∑
a=0,1

∑
b=0,1

p(b|a)
2pX

log2

(
p(b|a)
2pX

)
, (88)

where h2(p) = −p · log2 p− (1− p) · log2(1− p) is the binary entropy and
the probability of the conclusive measurement outcome is

pX =
1
2

∑
a=0,1

∑
b=0,1

p(b|a). (89)

4.3 Eve’s information
To estimate Eve’s information (I(A:E) in the Eq. (6) of the main text), we
find the explicit form of the quantum state owned by Eve after the users
perform post-selection. The density matrix of the joint ABE system is

〈
ρ̂

f
ABE

〉
ϕ

=
∑
b=0,1

∑
a=0,1

1
2p(X|a)

∫
d2α P(α,

√
T1γa,G1)

× |a〉 〈a|A ⊗ |b〉 〈b|B ⊗
1

2π

2π∫
0

dϕ
∣∣∣eiϕ √rE|α|

〉 〈
eiϕ √rE|α|

∣∣∣
E

×

∫
d2β P

(
β,

√
(1 − rE)T2α,G2

)
〈β|Êb|β〉 . (90)

For the further calculations it is useful to introduce “conditional” Eve’s
density matrix, i.e., Eve’s density matrix in the case that Alice sent bit a
and Bob got a conclusive measurement outcome:

ρ̂(a)
E ≡ trAB

[(
2 |a〉 〈a|A ⊗ 1̂ ⊗ 1̂

)
·
〈
ρ̂

f
ABE

〉
ϕ

]
. (91)
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The explicit form of this matrix is

ρ̂(a)
E =

1
p(X|a)

∫
d2α P

(
α;

√
T1γa,G1

)
×

∫
d2β P

(
β;

√
(1 − rE)T2α,G2

)
〈β|ÊX|β〉

×

 1
2π

2π∫
0

dϕ
∣∣∣eiϕ √rE|α|

〉 〈
eiϕ √rE|α|

∣∣∣
E

 , (92)

where ÊX ≡ Ê0 + Ê1. To simplify the expression, one can convert in-
tegration into Polar coordinates (α = |α|eiϕα , d2α = |α| d|α| dϕα), apply
Fubini’s theorem, and carry out integration over ϕα analytically

2π∫
0

dϕα P
(
|α|eiϕα ;

√
T1γa,G1

)
=

2 exp
(
−
|α|2+|γa |

2

G1−1

)
G1 − 1

· I0

(
2|α|γa

G1 − 1

)
, (93)

where I0(z) is the modified Bessel function of the first kind. The same
procedure can be carried out for integration over β: bearing in mind that
〈β|ÊX|β〉 does not depend on ϕβ, we have

2π∫
0

dϕβ P
(
|β|eiϕβ ;

√
(1 − rE)T2α,G2

)

=

2 exp
(
−
|β|2+(1−rE)|α|2

G2−1

)
G2 − 1

· I0

(
2|β|
√

1 − rE|α|

G2 − 1

)
. (94)

The rightmost integral in Eq. (92) also can be calculated in the analytical
way and expressed in terms of the Fock states {|n〉}+∞n=0:

1
2π

2π∫
0

dϕ
∣∣∣eiϕ √rE|α|

〉 〈
eiϕ √rE|α|

∣∣∣ = e−rE |α|
2

+∞∑
n=0

(
rE|α|

2
)n

n!
|n〉 〈n| . (95)

Substituting the results from Eqs. (93–95) into Eq. (92), we get

ρ̂(a)
E =

4/p(X|a)
(G1 − 1)(G2 − 1)

+∞∫
0

d|α| |α| exp
(
−
|α|2 + |γa|

2

G1 − 1

)
I0

(
2|α|γa

G1 − 1

)

×

+∞∫
0

d|β| |β| exp
(
−
|β|2 + (1 − rE)|α|2

G2 − 1

)
I0

(
2|β|
√

1 − rE|α|

G2 − 1

)
· 〈β|ÊX|β〉

×

+∞∑
n=0

exp
(
−rE|α|

2
) (

rE|α|
2
)n

n!
|n〉 〈n| . (96)

Note that the resulting density matrix is diagonal in the Fock basis—
which is natural given the phase randomization. The diagonal elements
of the matrix can be expressed as

〈n|ρ̂(a)
E |n〉 =

4rn
E exp

(
−

γ2
a

G1−1

)
n!(G1 − 1)(G2 − 1)p(X|a)

+∞∫
0

d|β| |β| · f (|β|) exp
(
−
|β|2

G2 − 1

)

×

+∞∫
0

d|α| |α|2n+1 exp
(
−|α|2 ·

[
1

G1 − 1
+

1 − rE

G2 − 1
+ rE

] )

× I0

(
2|α|γa

G1 − 1

)
· I0

(
2|β|
√

1 − rE|α|

G2 − 1

)
. (97)

In order to take integral over |α| analytically, we utilize the fact that the
main contribution to the integral comes from |α| � 1 which enables us
to use the asymptotic expansion 58:

I0(z) =
ez

√
2πz

(
1 +

1
8z

+ O
(

1
|z|2

))
, z ∈ R. (98)

Thus, we have

I0

(
2|α|γa

G1 − 1

)
· I0

(
2|β|
√

1 − rE|α|

G2 − 1

)

=
1

4π|α|

√
(G1 − 1)(G2 − 1)
γa|β|

√
1 − rE

exp
(
2|α| ·

(
γa

G1 − 1
+
|β|
√

1 − rE

G2 − 1

))
×

(
1 +

1
16|α|

[
G1 − 1
γa

+
G2 − 1
|β|
√

1 − rE

]
+ O

(
1
|α|2

))
. (99)

Utilizing this form, we get

〈n|ρ̂(a)
E |n〉 ≈

rn
E exp

(
−

γ2
a

G1−1

)
/p(X|a)

π

√
γa|β|

√
1 − rE(G1 − 1)(G2 − 1)

+∞∫
0

d|β| |β| · f (|β|)

×

(
κn (|β|) +

1
16

[
G1 − 1
γa

+
G2 − 1
|β|
√

1 − rE

]
κ̃n (|β|)

)
· e−

|β|2
G2−1 , (100)

where we introduced two subsidiary functions κn (|β|) and κ̃n (|β|), n ∈ N:
we define

κn (|β|) =

+∞∫
0

d|α|
|α|2n

n!
· e−A|α|2+B|α|

=
1

An+1/2 ·


√

B2

4A
· 1F1

(
n + 1,

3
2
,

B2

4A

)

+
Γ
(
n + 1

2

)
2 · n!

· 1F1

(
n +

1
2
,

1
2
,

B2

4A

) , (101)

where 1F1(x, y, z) is the Kummer confluent hypergeometric function (for
large values of the third argument we utilize the approximation from
Ref. [58]), and

A =
1

G1 − 1
+

1 − rE

G2 − 1
+ rE, (102)

B ≡ B (|β|) =
2γa

G1 − 1
+

2|β|
√

1 − rE

G2 − 1
. (103)

Function κ̃n (|β|) is defined similarly:

κ̃n (|β|) =

+∞∫
0

d|α|
|α|2n−1

n!
· e−A|α|2+B|α|

=
1

An−1/2 ·


√

B2

4A
·

Γ
(
n + 1

2

)
n!

· 1F1

(
n +

1
2
,

3
2
,

B2

4A

)
+

1
2n
· 1F1

(
n,

1
2
,

B2

4A

)]
. (104)

For n = 0 the integral from Eq. (104) does not converge—let us address
this case individually. Instead considering two terms of the series in
Eq. (98), we take into account only the first one, which makes the pri-
mary contribution to the sum for large |α|; thus, we get

κ0 (|β|) =

+∞∫
0

d|α| e−A|α|+B|α| =

√
πeB2/4A

2
√

A
erfc

(
B

2
√

A

)
, κ̃0 (|β|) = 0.

(105)
With the beam splitter attack, Eve gets one of two non-equiprobable
quantum states: ρ̂(0)

E with probability q0 =
p(X|0)
2pX

and ρ̂(1)
E with q1 =

p(X|1)
2pX

.

The explicit forms of diagonal ρ̂(0)
E and ρ̂(1)

E can be obtained by substitut-
ing the results from Eqs. (101–105) into Eq. (100). Eve’s ensemble E can
be shortly defined as

E =
{(

q0, ρ̂
(0)
E

)
,
(
q1, ρ̂

(1)
E

)}
. (106)
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The maximum information that Eve can obtain about Alice’s bit on aver-
age is bounded by the Holevo quantity χ (E):

I(A,E) ≤ χ (E) = S
(
q0ρ̂

(0)
E + q1ρ̂

(1)
E

)
− q0S

(
ρ̂(0)

E

)
− q1S

(
ρ̂(1)

E

)
. (107)

Since ρ̂(0)
E and ρ̂(1)

E are diagonal, Eq. (107) can be simplified by replacing
von Neuman entropy S with the classical Shannon entropy H

S
(
q0ρ̂

(0)
E + q1ρ̂

(1)
E

)
= H

( {
q0 〈n|ρ̂

(0)
E |n〉 + q1 〈n|ρ̂

(1)
E |n〉

}+∞

n=0

)
, (108)

S
(
ρ̂(a)

E

)
= H

( {
〈n|ρ̂(a)

E |n〉
}+∞

n=0

)
, (109)

where the Shannon entropy of a probability distribution
{
w j

}
j

is defined

as H
(
{w j} j

)
= −

∑
j
w j log2

(
w j

)
.

4.4 Correlations
Stealing a proportion rE of a coherent signal pulse |γ〉 provides Eve with
a state |

√
rEγ〉 uncorrelated with |γ〉, as the state of the joint system is

described by product |
√

1 − rEγ〉⊗ |
√

rEγ〉. This is, however, not the case
when the signal pulse is subject to optical amplification, turning a pure
coherent state into a mixture of coherent states: now, by splitting off

same rE-fraction of this mixture, Eve gets a correlated state containing
more information about the sent bit. Therefore, contrary to one’s exe-
cutions, for Eve standing right next to Alice may be less effective than
somewhere further along the line—provided that the noise from the opti-
cal amplifiers does not overweight the benefits of correlations. Assuming
that Eve performs the beam splitter attack, we quantify the correlation be-
tween Eve’s and Bob’s measurement results by calculating the Pearson
correlation coefficient 59, 60

RBE =
〈〈nBnE〉〉

σnB · σnE

, (110)

where 〈〈. . . 〉〉 stands for irreducible correlator, σnB(E) is the standard vari-
ance. The values are defined as follows

〈〈nBnE〉〉 = 〈nBnE〉ρ̂BE
− 〈nB〉ρ̂B

· 〈nE〉ρ̂E
, (111)

σnB =

√〈
n2

B

〉
ρ̂B
− 〈nB〉

2
ρ̂B
, σnE =

√〈
n2

E

〉
ρ̂E
− 〈nE〉

2
ρ̂E
. (112)

Averaging over a density matrix ρ̂ is denoted here as 〈. . . 〉ρ̂. As follows
from Eq. (79), the Bob-Eve density matrix can be written as

ρ̂BE =

∫
d2α P

(
α,

√
T1γ,G1

) ∫
d2β P

(
β,

√
T2(1 − rE)α,G2

)
×

2π∫
0

dϕ
2π
|
√

1 − rEαeiϕ〉 〈
√

1 − rEαeiϕ|B ⊗ |
√

rEαeiϕ〉 〈
√

rEαeiϕ|E ,

(113)

ρ̂B = trE
[
ρ̂BE

]
, ρ̂E = trB

[
ρ̂BE

]
, (114)

where the effective amplification coefficients G1, G2 and transmission
probabilities T1, T2 are defined by Eqs. (71) and (72). The average pho-
ton numbers of Bob’s and Eve’s subsystems are

〈nB〉ρ̂B
=

∫
d2α P

(
α,

√
T1γ,G1

)∫
d2β P

(
β,

√
T2(1−rE)α,G2

)
· |β|2

= (1 − rE) ·
(
|γ|2 + G1 − 1

)
+ G2 − 1, (115)

〈nE〉ρ̂E
=

∫
d2α P

(
α,

√
T1γ,G1

)
· |
√

rEα|
2 = rE ·

(
|γ|2 + G1 − 1

)
.

(116)

The average product value is

〈nBnE〉ρ̂BE
= rE(G2 − 1) ·

(
|γ|2 + G1 − 1

)
+ rE(1 − rE) ·

(
2(G1 − 1)2 + 4|γ|2(G1 − 1) + |γ|4

)
. (117)

Hence, the expression for the irreducible correlator depends only on
|γ|2, rE and G1:

〈〈nBnE〉〉 = rE(1 − rE) · (G1 − 1) ·
(
2|γ|2 + G1 − 1

)
. (118)

Here, we utilized the fact that 〈n〉|α〉〈α| = |α|2. In turn, the variances are
obtained using the fact that 〈n2〉|α〉〈α| = |α|

4 + |α|2:

σ2
B = (1 − rE) ·

(
|γ|2 + G1 − 1

)
· (1 + 2(G2 − 1))

+ (1 − rE)2 · (G1 − 1) ·
(
2|γ|2 + G1 − 1

)
+ G2(G2 − 1), (119)

σ2
E = rE

(
|γ|2 + G1 − 1

)
+ r2

E(G1 − 1)
(
2|γ|2 + G1 − 1

)
. (120)

Substituting Eqs. (118–120) and Eqs. (71, 72) into Eq. (110) yields the
dependence of RBE on DAE. Function RBE (DAE) is monotonically grow-
ing which shows that with Eve approaching Bob, their measurement
results become more and more correlated. As expected, if G1 = 1—
corresponding to the case where Eve is right next to Alice—RBE (DAE)
vanishes, meaning zero correlations.

NOTE 5. Phase encoding
In this note, we study the phase encoding scheme. We perform our
analysis along the same lines as in the case of the photon number
encoding.

5.1 Bob’s information
For self-evident reasons, phase randomization approach is inapplicable
in case of phase encoding-based protocol. The density matrix describing
the tripartite system right before Bob’s measurement is

ρ̂→Bob
AS =

1
2

∑
a=0,1

|a〉 〈a|A ⊗
∫

d2α P(α,
√

T1γa,G1)

×

(∫
d2β P

(
β,

√
(1 − rE)T2α,G2

)
· |β〉 〈β|S

)
. (121)

Given that Alice sent bit a ∈ {0, 1}, the probability that Bob’s measure-
ment outcome is b ∈ {0, 1} can be written as

p(b|a) =

∫
d2α

π (G1 − 1)
· exp

(
−
|α − γa|

2

G1 − 1

)

×

∫
d2β

π (G2 − 1)
exp

−
∣∣∣β − √1 − rEα

∣∣∣2
G2 − 1

 · 〈β|Êb|β〉 . (122)

The overlap between coherent state |β〉 and the state with a particular
value of the q̂−quadrature is

|〈q|β〉|2 =

√
2
π
· exp

(
−2 (Re[β] − q)2

)
. (123)

For conclusive measurement results on the Bob’s side we have

〈β|Ê0|β〉 =
1
2

θ′2∫
θ′1

dq e−2(Re[β]−q)2
, 〈β|Ê1|β〉 =

1
2

−θ′1∫
−θ′2

dq e−2(Re[β]−q)2
. (124)

The expression for conditional probabilities p(b|a) can be determined
analytically

p(b|a) =
1
2

erf


√

2
(
θ′2 + (−1)a+b · γ

√
1 − rE

)
√

1 + 2 (G2 − 1) + 2 (1 − rE) (G1 − 1)


−

1
2

erf


√

2
(
θ′1 + (−1)a+b · γ

√
1 − rE

)
√

1 + 2 (G2 − 1) + 2 (1 − rE) (G1 − 1)

 . (125)
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Since p(X|0) = p(X|1), the mutual information between Alice and Bob
is

I (A,B) = S (A) − S (A|B) = 1 − h2

(
p(1|0)

pX

)
. (126)

As a result, we obtain the explicit form of the expression S (A) − S (A|B)
which we substitute into Eg. (6) of the main text.

5.2 Eve’s information
The density matrix of the Alice-Bob-Eve system given that Bob obtained
conclusive measurement result is

ρ̂f
ABE =

1
2

∑
a=0,1

1
p(X|a)

|a〉 〈a|A ⊗
∑
b=0,1

|b〉 〈b|B ⊗
∫

d2α P(α,
√

T1γa,G1)

×

∫
d2β P

(
β,

√
(1 − rE)T2α,G2

)
〈β|Êb|β〉 |

√
rEα〉 〈

√
rEα|E . (127)

To estimate the conditional entropy S (A|E) one has to calculate the re-
duced Alice-Eve density matrix by tracing out Bob’s subsystem:

ρ̂f
AE = trB

[
ρ̂f

ABE

]
=

1
2

∑
a=0,1

1
p(X|a)

|a〉 〈a|A ⊗
∫

d2α P
(
α,

√
T1γa,G1

)
×

∫
d2β P

(
β,

√
(1 − rE)T2α,G2

)
〈β|ÊX|β〉 |

√
rEα〉 〈

√
rEα|E . (128)

It can be rewritten as

ρ̂f
AE =

∫
d2α QX[α] · ρ̂f

AE [α] , (129)

where

QX[α] =
P

(
α;
√

T1γ,G1

)
pX

∫
d2β P

(
β;α

√
(1−rE)T2,G2

)
〈β|ÊX|β〉 , (130)

ρ̂f
AE [α] =

1
2

∑
a=0,1

|a〉 〈a|A ⊗
∣∣∣(−1)a √rEα

〉 〈
(−1)a √rEα

∣∣∣
E
. (131)

Mutual information between the eavesdropper and Alice after the post-
selection procedure is

I (A,E) = S (A) − S (A|E) = 1 − S (A|E). (132)

The lower bound on the entropy S (A|E) may be found by exploiting the
concavity of conditional quantum entropy

S (A|E) ≥
∫

d2α QX[α] · S ρ̂f
AE[α](A|E)

=

∫
d2α QX[α] ·

1 − h2

1 +
∣∣∣〈−√rEα|

√
rEα〉

∣∣∣
2


= 1 −

∫
d2α QX[α] · h2

1 + exp
(
−2rE|α|

2
)

2

 , (133)

Straightforward calculations allows us to find

〈
exp

(
−2rE|α|

2
)〉

QX
=

∫
d2α QX[α] · e−2rE |α|

2
=

exp
(
−2rE |γ|

2

1+2rE(G1−1)

)
2pX (1+2rE(G1−1))

×

∑
x=0,1

erf
 θ′2 · [1+2rE(G1−1)]+ (−1)x√(1−rE)γ

ζ ·
√

1+2rE(G1−1)


−

∑
x=0,1

erf
 θ′1 · [1+2rE(G1−1)]+ (−1)x√(1−rE)γ

ζ ·
√

1+2rE(G1−1)

 , (136)

where S ρ̂f
AE[α](A|E) denotes conditional entropy for Alice-Eve density

matrix described by Eq. (131). Utilizing Jensen’s inequality,

〈h2(x)〉 ≤ h2 (〈x〉) , (134)

we bound Eve’s information as

I(A,E) ≤ h2

1 +
〈
exp

(
−2rE|α|

2
)〉

QX

2

 . (135)

where ζ =
√

G1 + G2 + 2rE(G1 − 1)(G2 − 1) − 3/2. By substituting
Eq. (136) into Eq. (135) we obtain the upper bound for Eve’s informa-
tion (I(A:E) in the Eq. (6) of the main text).
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