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Chemical component design is a computationally challenging procedure that often entails itera-
tive numerical modeling and authentic experimental testing. We demonstrate a novel optimization
method, Tensor train Optimization (TetraOpt), for the shape optimization of components focusing
on a Y-shaped mixer of fluids. Due to its high parallelization and more extensive global search,
TetraOpt outperforms commonly used Bayesian optimization techniques in accuracy and runtime.
Besides, our approach can be used to solve general physical design problems and has linear com-
plexity in the number of optimized parameters, which is highly relevant for complex chemical com-
ponents. Furthermore, we discuss the extension of this approach to quantum computing, which

potentially yields a more efficient approach.

I. INTRODUCTION

The development of new reactors and components is
opening up entirely new opportunities for the chemical
industry to optimize the geometry of its plants and pro-
cesses [1]. These opportunities include improving the
plants’ performance, reducing costs and decreasing their
environmental impact. However, the design of various
components (e.g., fluid mixers) is a computationally chal-
lenging process [2].

The underlying problem in designing these components
is searching for the geometry (shape) that satisfies cer-
tain criteria. For instance, the maximization of the effi-
ciency of a chemical process or the minimization of the
mechanical tension in a component can be considered.
Such design is usually done in an iterative way, com-
bining numerical modeling with real experimental test-
ing [3]. With complex systems, even numerical modeling
takes a substantial amount of time and computational
resources, so it is not feasible to perform many of these
simulations. The only efficient way to solve such a prob-
lem is by sampling the objective with various geometries
and deciding what is the optimal set of geometrical pa-
rameters while attempting to keep the number of samples
as low as possible. In a given high dimensional parame-
ter system with multi objective optimization, black-box
optimization techniques can be very effective [4].

Black-box optimization deals with problems where the
structure of the objective function and/or the constraints
defining the set are unknown. For example, in our case,
there is no known analytical solution for the partial dif-
ferential equations that govern the dynamics. The most
naive way is to sample the objective using an equidistant
grid in a parameter space. However, such an approach
scales exponentially with the number of parameters and
is clearly not feasible. More advanced approaches include
the use of Bayesian optimization [5], where the probabil-
ity distribution is updated after each sample so the next
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sampling point is provided by the optimization routine.
While Bayesian optimization is widely used in academia
and industry, its scaling is unclear and the structure of
the algorithm does not allow for highly parallel process-
ing or hardware acceleration, e.g. the use of Graphical
Processing Units (GPUs).

In this work, we consider the tensor-train black-box op-
timization technique, TetraOpt (see Ref. 6 and 7), and
apply it to a specific component design, a Y-mixer used
for the mixing of two fluids [3]. We introduce a set of geo-
metrical parameters and utilize TetraOpt to find the ge-
ometry that provides the most efficient mixing of liquids.
We demonstrate that such an optimization method can
be implemented in parallel so that it reduces the time of
the component design. This speeds up the prototyping
and the full development cycle. In addition, this opti-
mizer finds a better optimum in comparison to Bayesian
optimization and requires much less work with hyperpa-
rameter tuning, since it has only three hyperparameters,
which are very intuitive.

II. PROBLEM DESCRIPTION

The Y-mixer that is used to mix two liquids consists of
two inlets that are connected symmetrically at a certain
angle, guiding the liquids to a single outlet as shown in
Fig. 1. In this work, we consider the mixing of water with
ethanol with the property data given below.

Parameter Ethanol |Water
Density, kg/m® 789 990
Molar weight, g/mol 46 18
Dynamic viscosity, mPa-s |1.18 1.0

In order to simulate the flow of the liquids, we utilize
an open-source Computational Fluid Dynamics (CFD)
software package, OpenFoam [9], using the PyMesh utility
for mesh generation [10]. The simulation is performed
using the reactingFoam utility from OpenFoam. The case
is simulated using a kEpsilon turbulence model [9]. The
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volumetric flow rate is fixed for both liquids at 8 mL/s.

The shape of a Y-mixer includes a round section and
different diameters along the tubes, as shown in Fig.1
(left). The inlet tubes have three different diameters
along their lengths, while the outlet tube has a constant
diameter. When a Y mixer with narrow channels and
a long outlet tube is considered, a detailed simulation
with a fine mesh (a few million elements) could take a
few hours until convergence. In order to benchmark op-
timization methods, we simplify the shape, as shown in
Fig.1 (right), which reduces the runtime to 20 seconds.
Such a simplification affects both the dynamics inside the
mixer and the objective function but without loss of gen-
erality, we can use it with the key goal to analyze and
benchmark the TetraOpt.

In order to numerically characterize the quality of the
mixing, we calculate the coefficient of variation (CoV) of
the phase fraction of the liquids at a horizontal section,
which is 2.5 mm below the mixing chamber. The CoV is
calculated in the following way:

o(mi/(m1 + ma))

CoV = (m1/(mq +mg)) ’

(1)

where mq(x), ma(z) are phase fractions of the corre-
sponding liquids on the section surface, which we obtain
by solving the Navier-Stokes equations with OpenFoam.
The standard deviation of z is o(z) and the mean value
of z is (x). For homogeneous mixing, the coefficient of
variation is close to zero (CoV — 0), which constitutes
the optimization problem that we solve here.

Here, we consider a set of four parameters to optimize:

1. y-angle, the angle between the inlet tube and the
outlet tube (from 0° to 30°);

2. connection radius, the effective radius of the clos-
est to the outlet part of the inlet tube (from 0.2 to
0.5 mm);

3. connection length, the length of the closest to
the outlet part of the inlet tube (from 0.5 to 1.5
mm);

4. inlet radius, the radius of the inlet (from 0.2 to
0.6 mm).

Due to the nature of the problem, it is impossible to
write down the CoV as a function of these four param-
eters since it involves the solution of the Navier-Stokes
equation. Therefore, the problem is considered to be a
black-box — it is possible to sample the CoV at arbitrary
parameters values with the goal of finding the minima of
the CoV as fast as possible.

III. BAYESIAN OPTIMIZATION

One of the most common ways to solve black-box op-
timization problems is to use Bayesian optimization [11].

It is successfully used in hyperparameter tuning tasks in
machine learning [12, 13] and in shape optimization in
CFD problems [14]. The only assumption we make is
that the cost function is continuous and its value can
be estimated at a given point in a specified search area,
which is true for the given shape optimization problem.

The Bayesian algorithm works in an iterative way — it
leverages obtained information about the function (such
as the function values at several points) to approximate
it. At each iteration, it provides a new point at which the
function should be estimated and updates the approxi-
mation using the new point. The process is repeated until
it converges.

In the beginning, the algorithm receives the initial
function values at several points. A single iteration of
the algorithm consists of three steps:

1. Based on all the available data about previously
estimated points, an approximation is built (a sur-
rogate model), which is usually done via Gaussian
Processes [12]. A Gaussian process (GP) is defined
by its mean function m : x — R and its covariance
function k£ : x X x — R, which we denote as

f(x) ~ GP (m(x),k (x,x)) .

In the one-dimensional case, it finds the mean m(x)
and the dispersion o (z) functions as shown in Fig. 2

(top).

2. The second step is to build the acquisition function,
which shows how likely a point should be chosen
as the next estimate in terms of the exploration-
exploitation trade-off. Exploitation means sam-
pling at points where the surrogate model predicts
a high objective and exploration means sampling at
locations where the prediction uncertainty is high.
The simplest acquisition function in the case of
maximization is the following:

u(x | Dr:—1) = m(x) + o(x),

which corresponds to the upper blue covering line
in Fig.2 (bottom). However, the more popular
ones are the maximum probability of improve-
ment (MPI), expected improvement (EI) and up-
per confidence bound (UCB) [5]. Here Di4—q1 =
(x1,%1) -+, (X¢—1,y1—1) are the ¢t — 1 samples
drawn from f so far.

3. The next sampling point x; is determined accord-
ing to x; = argmax, u (x | D1.t—1). Then the func-
tion value at this point is obtained as y; = f (xy).
Finally, the sample is added to previous samples
D1t = D1.4—1, (X4, 9¢) and the GP is updated.

The main disadvantages of the algorithm are that it
is poorly parallelizable and struggles to work with non-
continuous variables. The poor parallelization is due to
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FIG. 1: Left: The original Y-mixer considered for the mixing of two fluids. Right: The simplified geometry of the
Y-mixer With the parameters considered for the optimization.
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FIG. 2: Bayesian optimization. The blue curve repre-
sents the target function, the red dots depict the evalu-
ated points, the dashed line shows a mean m(z) function
and the blue region covers [m(x) — o(x), m(z) + o(z)]
area. The acquisition function is plotted below.

the fact that the algorithm works sequentially and at
each step of the optimizer’s work, it is necessary to esti-
mate the value of the cost function at only a single point.
Even though multiple runs of the algorithm can be per-
formed in parallel, it usually fails to significantly change
the efficiency [11].

IV. TENSOR TRAIN OPTIMIZATION

Here, we propose to use a completely different black-
box optimization algorithm, which is based on Tensor
Train (TT) decompositions [15, 16]. Tensor Trains [17]
represent multi-dimensional tensors in a compressed form
as a product of small tensors:

G (e, i1, 1) Go (a1, 12, ai2)

Aliy, ... iq) = Z

QQy.-yXd—1,04
e Gd (ad—laidvad) )

where G is the 3-dimensional tensor called the TT-core.
The indices i; run through values from 1 to n. The
main characteristic of such a representation is the rank,
r, which is equal to the maximum size among the in-
dices ag, a1, ..., aq and which expresses the correlations
between variables/indices.

As in a grid search, the optimization algorithm
(TetraOpt) requires discretization of the search space on
a uniform grid. Let d be the number of variables and n
be the grid size in one dimension. However, unlike grid
search, TetraOpt does not estimate the cost function at
all n points of the grid but instead dynamically provides
the next set of evaluating points in the search space based
on the knowledge accumulated during all previous evalu-
ations, as in Bayesian optimization. The main advantage
of this algorithm in comparison to Bayesian optimization
is its ability to be run in a parallel way and provide a bet-
ter (“more global”) search for the optimum.

The main hyperparameters of the TetraOpt algorithm
are the number of variables, d, the grid-size in one dimen-
sion, n, and the rank, r, with which we try to approx-
imate a tensor of discretized function values via tensor
train decomposition. The larger r is, the better the op-
timum is but this requires more time. The last hyperpa-
rameter is the number of iterations, I. TetraOpt requires
O(Idnr?) function calls and performs O(Idnr?) calcula-
tion operations. Since black-box functions are usually
hard to estimate, the runtime of the algorithm can be
neglected in comparison to the time of the function calls.

TetraOpt is built upon the cross-approximation tech-
nique (TT-cross) [18], which enables the approximation
of a given tensor in the Tensor Train format by referenc-
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FIG. 3: Overall scheme of shape-optimization via TetraOpt. Firstly, TetraOpt generates a list of geometrical param-
eter sets at which the simulation should be performed. Then, the meshes for corresponding geometries are generated
in Python using the PyMesh utility. After that, at each set of parameters, the simulations are run in parallel utilizing
the previously generated meshes and OpenFoam (this is the most computationally difficult step). The cost values are
calculated from each simulation using Python and inner OpenFoam functions. Then the data is passed to TetraOpt

and the cycle is repeated until convergence.

ing only a subset of its elements. The TT-cross algo-
rithm in turn is based on the MaxVol routine [19], which
finds an r x r submatrix of maximum volume (i.e. a sub-
matrix with a maximum determinant module) in an n xr
matrix. It can be shown that the maximum element of a
submatrix with maximal volume is a good approximation
of the maximal element of the whole matrix [19]:

7 2
Jmax T Z Jmax7

in terms of its modulus, jmax is the maximal element of
a r X r submatrix with maximal volume, and J,.x is the
maximal element of the whole matrix. To get more intu-
ition and learn the technical aspects of tensor-based al-
gorithms for optimization, we refer the reader to Ref. 15.

The overall scheme of the TetraOpt workflow can be
found in Fig. 3: TetraOpt iteratively requires estimating
the values of the optimization function at several grid
points (see Fig.4), which we count using the OpenFoam
simulation. In terms of finding the optimum, the algo-
rithm remembers the best points estimated during the
TT-cross algorithm and updates them if superior points
are found. In addition, the algorithm is parallelizable be-
cause, at each step, it requires an estimation of the cost
function at nr? points, which can be done in parallel.
However, there is no rigorous proof that it finds a better
optimum than Bayesian optimization - each task requires
a separate analysis.

V. RESULTS

In this section, the results of the shape optimization
using the Tensor Train optimization technique and its
comparison with Bayesian optimization are presented.
The grid-search was utilized to find a global optima but,
of course, such a method is computationally inefficient.
All computations are performed using the QMware system
[20], including CFD simulations and optimization. The
CoV dependency on the given variables is complicated
and non-obvious near the optimal value, as can be seen
in Fig. 5.
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FIG. 4: The sequence of steps in TetraOpt using a 3D
function example. (a) Demonstration of the function dis-
cretization on a uniform 3D-grid; the figures (b)-(f) indi-
cate the points in which the function is estimated during
one iteration of the TetraOpt algorithm. The next step is
shown in a bright color and the previous steps are trans-
parent.

Based on the simplified CFD model, a single simula-
tion of OpenFOAM takes 16 seconds. As was stated, the
TetraOpt algorithm is highly parallelizable, thus we run
multiple CFD simulations in parallel so the effective run-
time was reduced to 1.1 seconds per simulation, as shown
in Fig.6(a).

The results of the comparison between TetraOpt and
the Bayesian optimization are shown in Fig. 6(b), where
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FIG. 5: The cost function landscape as a function of two
parameters: connection length and y-angle. The darker
the colour, the better the mixing is. The fixed coordi-
nates are the inlet radius = 0.275 mm and the connection
radius = 0.3 mm. We sample 100 points on each axis.

we average the results by running both algorithms 10
times (solid curves). We compare two optimizers in terms
of the runtime and demonstrate that TetraOpt converges
faster to a more optimal value — on average TetraOpt ob-
tains an approximately 2.33 times better optimum at the
end of optimization than Bayesian optimization: 0.051
vs 0.12. Moreover, the tensor-based optimizer finds the
best possible shape with a 0.027 cost function value (0%
gap), while the Bayesian approach is able to find the
shape with a 0.059 cost value (~ 118% gap).

The behavior of the curves in Fig.6(b) has a step-
wise character due to the fact that CFD simulations are
iteratively performed, which takes a considerable time
(plateaus), and the optimum is updated while simula-
tions are done (drops). The sharp jumps of the TetraOpt
curve (e.g., at 75 and 125 seconds) are due to the fact that
a large number of points were simultaneously estimated,
which significantly updated the optimum.

The found optima are shown in Table I. Remarkably,
despite the fact that TetraOpt requires an order of mag-
nitude more function calls (number of carried-out sim-
ulations), it finishes the optimization in less time due
to parallelization. It is worth noting that the grid was
such that the minimal value on the grid was close to the
minimal value on a whole domain because otherwise, the
Bayesian optimization would have some privileges.

In order to maximize the performance of both algo-
rithms, we tune the hyperparameters. The following val-
ues are used for TetraOpt and Bayesian optimization,
respectively:
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FIG. 6: (a) Execution time per simulation dependent on
the number of parallel simulations. The effective time
of each simulation time decreases but after 50 parallel
simulations, it does not change (or even increases) due
to imperfect parallelization methods and hardware. (b)
Comparison between TetraOpt and Bayesian optimiza-
tion. TetraOpt finds, on average, an approximately 2.33
times better optimum in the same time than the Bayesian
approach. Here, TetraOpt performs CFD simulations in
parallel, while Bayesian optimization requires only run-
ning one simulation at each iteration. Shadowed areas
denote the variations in the behavior of the optimizers
during 10 launches: dotted lines represent the best and
worst scenarios for each optimizer. The red line repre-
sents the minimum found by a grid search.

TetraOpt Bayesian

# of iterations 2 |# of iterations 30
Rank 4 |# of initial points 5
Grid size per parameter 5 | Acquisition method UCB

For the Bayesian optimization, a parameter x, which
indicates how close the next parameters are sampled, is
2.576, which is constant on each iteration. The Bayesian
optimizer is taken from an open-source library [21].

Fig.7 shows a visual comparison between the flow
behaviors in optimized and non-optimized geometries.
Figs. 7(a) and 7(b) represent the water fraction: while
frame (a) shows overall profile of water fraction along
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FIG. 7: The top row shows the data before optimization and the bottom row displays the data after optimization.
(a) The water fraction with the cutting plane where the cost function is calculated (in green). (b) The water fraction
at the specified cutting plane. In the non-optimized case, the value of cost function (CoV) is 0.56, while after the
optimization it is 0.05. The color represents the phase fraction of the water at each point. (c) The pressure before
and after the optimization and (d) velocity distribution before and after the optimization.

the walls, frame (b) shows the water fraction distribu-
tion on the outlet section where the cost function is eval-
uated. It is clear that the water fraction in the opti-
mized mixer case is more uniform and the absolute value
is significantly smaller on average in comparison to the
non-optimized mixer case. Figs. 7(c) and 7(d) show the
pressure and absolute magnitudes of the velocity.

Ne | Parameter TetraOpt|BayesOpt
1 |Y-angle, angle 26.1° 7.5°

2 |Inlet radius, mm 0.27 0.275

3 |Connection length, mm |0.85 0.75

4 |Connection radius, mm |0.28 0.3
Resulting values TetraOpt | BayesOpt
Cost function, a.u. 0.0274 0.0593
Average fun. calls 228.5 35
Runtime, s 325 440

TABLE I: (1-4) Optimal parameters of the Y-mixer
found by TetraOpt and Bayesian optimization. We show
the final cost function value, the total number of cost
function calls (number of performed simulations) aver-
aged by 10 optimization runs and the total runtime of
the optimization launched using QMware.

VI. EXTENSION TO QUANTUM COMPUTING

Remarkably, a slightly modified version of TetraOpt
can be improved with a quantum algorithmic part. As

stated in the description of the optimizer (Sec. IV), the
algorithm tries to approximate the tensor of function val-
ues on a grid but it obtains the optimum only as a by-
product of the approximation algorithm. Therefore, the
next step is to use the approximation to obtain new, even
better, optima.

Let us denote a tensor of cost-function values on the
uniform grid as = (for later convenience, it is worth men-
tioning that we can always reshape x into a vector), which
we try to approximate via Tensor Train zp7 of rank r us-
ing the TT-cross algorithm. The optimization task can
now be redefined as the problem of finding the maximum
(minimum) element of the tensor x. Here, we assume
that xpp approximates x with good precision, or at least
its optimal values are close to the optima of x.

Thus, we can implement the power method [22]. That
is, we find the maximal element of ™ instead of x, which
is much easier since the largest element in z™ is much
larger, in relative terms, compared to the largest element
of x. Since we assume that the optima of zr7 are close
to the optima of x and since it is much faster to operate
with 277 (for example, the squaring operation 2%, costs
O(dnr*) in TT format as compared to the complexity
O(n) for classical squaring z?), the idea is to realize
the power method via Tensor Trains. However, the
problem with this approach is that the ranks increase
dramatically as r", leading to a significant increase in
complexity. As a result, implementing this algorithm
on a classical computer may not be as efficient as on a
quantum computer, which does not have any complexity



dependence on the ranks. To use a quantum computer
for this purpose, we only need efficient preparation of
zprr and efficient multiplication by xpr. Fortunately,
several algorithms exist for encoding Tensor Trains
into a quantum computer [23-26]. Thus, a quantum
implementation of this algorithm will be able to perform
optimization in a more efficient way.

VII. CONCLUSION

In this work, we utilized TetraOpt to solve a shape
optimization problem of a Y-mixer used for the mixing
of two fluids. This problem is considered a black-box
optimization, i.e. there is no explicit expression for the
cost function and its estimation at a single point requires
significant computational resources. We demonstrated

that compared to Bayesian optimization, TetraOpt finds
a much better optimum in less time. We concluded that
such an improvement comes from the fact that TetraOpt
is a parallel technique and performs better exploration
during the optimization compared to Bayesian methods.

It is worth emphasizing that the application of this
method is not limited to the task at hand but can be ap-
plied to any optimization problem since it requires only
an objective function given at a point in the search area.
Besides, the method is straightforward to use because
there are only three hyperparameters with intuitive set-
tings.

Furthermore, we demonstrate an extension of this
method to quantum hardware — the realization of the
power method via quantum circuits, which can provide
a better optimum. The implementation of the quantum
part and its application to more complex problems and
geometries is the subject of future work.
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