
Solving workflow scheduling 
problems with QUBO modeling 

Optimization 

By Terra Quantum AG

terraquantum.swiss 2022



Solving workflow scheduling problems with QUBO modeling

A. I. Pakhomchik, S. Yudin, and M. R. Perelshtein
Terra Quantum AG, St. Gallerstrasse 16A, 9400 Rorschach, Switzerland

A. Alekseyenko
Volkswagen Group of America San Francisco, CA, USA

S. Yarkoni
Volkswagen Data:Lab, Munich, Germany

In this paper we investigate the workflow scheduling problem, a known NP-hard class of scheduling
problems. We derive problem instances from an industrial use case and compare against several
quantum, classical, and hybrid quantum-classical algorithms. We develop a novel QUBO to represent
our scheduling problem and show how the QUBO complexity depends on the input problem. We
derive and present a decomposition method for this specific application to mitigate this complexity
and demonstrate the effectiveness of the approach.

I. Introduction

Quantum computing has garnered increased attention
in recent years, in both industrial and academic contexts.
In general, the aim is to develop specialized hardware
that can be programmed to simulate a quantum me-
chanical process, which is classically intractable [1, 2].
Construction of algorithms using quantum bits (qubits)
currently proceeds as multiple paradigms, the most well-
known of which being the gate model [3] and the adia-
batic quantum computing [4] model. In the former, uni-
tary operators are used to manipulate individual qubits’
states to construct the logical operators. In the latter, a
system is initialized in a simple superposition of all possi-
ble states, and slowly evolved to represent a final function
(also called a final Hamiltonian). It has been shown that
these models are polynomially equivalent [5], and both
have been studied extensively.

Advancements in the development and production
of quantum hardware has led to the manufacture of
quantum hardware prototypes of various sorts, often
made publicly-accessible. Companies such as Google [6],
IBM [7], and D-Wave Systems [8], among others, all of-
fer cloud-based access to a suite of quantum algorithms
tailored for their respective quantum processing units
(QPUs). The purpose of these is to exploit such quantum
algorithms in order to address computationally difficult,
and sometimes intractable, problems in fields such as ma-
chine learning, molecular and physical simulation, and
optimization. Of these, significant work has already been
done in the realm of optimization, largely due to the im-
plementation of quantum annealing [9] and quantum ap-
proximate optimization algorithm (QAOA) [10]. Both of
these are metaheuristic quantum optimization algorithms
which can be implemented in currently-available quan-
tum hardware. Previous literature highlight the efforts
to construct suitable optimization problems that can ex-
ploit these quantum algorithms in both academic [11] and
industrial [12–16] circles.

How exactly quantum algorithms can impact combi-

natorial optimization in the absence of error-correction
remains an open question. Furthermore, there is little
evidence of concrete use of quantum algorithms for real-
world applications, outside of a select choice of show-
case examples (e.g., [17]). While error-correction will
allow implementation of provably asymptotically faster
quantum algorithms with respect to their classical coun-
terparts (such as Shor’s factoring [18], Grover’s search
algorithms [19], and solving systems of linear equa-
tions [20, 21]), it is unknown if noisy intermediate-scale
quantum (NISQ [22]) computing can overcome its limi-
tations to provide similar value. In the meantime, hybrid
quantum-classical algorithms have emerged to bridge the
gap until the end of the NISQ era is reached. Construc-
tion of variational algorithms has been demonstrated, in
particular for gate-model quantum computers, to per-
form specific tasks in quantum machine learning [23],
quantum chemistry [24], and optimization [25]. In this
paper, we compare such hybrid algorithms to a variety
of techniques to solve a specific class of scheduling prob-
lems, the workflow scheduling problem.

The rest of this paper is organized as follows: Section II
introduces the concepts behind the different scheduling
problems, as well as the previous works studied in quan-
tum computing. Section III formally introduces the ver-
sion of workflow scheduling investigated in this paper,
and develops the methods required to model this problem
as a QUBO for quantum optimization algorithms, includ-
ing a decomposition technique for solving large QUBOs.
In Section IV we present the data used to generate the
problem instances, and the algorithms used to solve them
in experiments. The results are presented and discussed
in Section V, and our conclusions are presented in Sec-
tion VI.

II. Applications of scheduling problems

Many applications related to supply chain and logis-
tics optimization can be formulated as certain classes

ar
X

iv
:2

20
5.

04
84

4v
1 

 [
qu

an
t-

ph
] 

 1
0 

M
ay

 2
02

2



2

of scheduling problems. Typically, these problems can
be described as a set of jobs (composed of individual
sequences of operations), each taking a non-negative
amount of time, that must be completed in the min-
imum amount of time (known as the makespan) on a
set of machines. There are different variants of the job-
shop scheduling problems [26–31], each with their own
set of constraints and conditions that uniquely define
them. Dynamic resources, supply constraints, time win-
dows (and more), all are examples of constraints that
may be used to tailor a sub-class of scheduling for a par-
ticular interesting case. A particularly general and well-
known version of the problem, the job-shop scheduling
problem (JSP), typically refers to the case where there
are N jobs to be executed on M machines, and no other
additional constraints. This simple version of the prob-
lem is already NP-hard; a well-known Ising model for-
mulation has been used to study the JSP in the con-
text of quantum computing [32]. Another example is a
similar scheduling problem, the Nurse Scheduling prob-
lem, which attempts to schedule nurses to shifts based on
personal availability and other hard constraints [33]. In
this work we motivate one specific subclass of schedul-
ing, namely the dynamic resource workflow scheduling
problem. The problem we consider is motivated by a
real-world use-case in the automotive industry, the qual-
ity control testing of manufactured cars at the end of an
assembly line. After a car is produced, a sequence of
tests and checks are performed by workers on the factory
floor to ensure the quality of production. This particular
problem has the following constraints: for a set of tests
to be performed, some tests may have sub-tasks that are
conflicting with other tests; the number of workers avail-
able changes over time; and most importantly, some tests
may be dependent on others to be completed first. The
objective of the optimization problem is therefore to de-
termine the sequence of tests that minimizes the total
amount of time required to complete all the tests (i.e.,
minimize the makespan).

We define the problem formally as follows: given a set
J = {J1, · · · , JN} denoting N jobs (we consider the case
where each job has one operation), each job takes an
amount of time T (Ji) and requires at least R(Ji) work-
ers to be started and executed. The set of dependencies
for each job is D(Ji) = {Jj , Jk, · · · }, denoting all tasks
which are dependent upon the completion of Ji. Lastly,

the vector ~W represents the number of available work-
ers to perform the tasks at each time step. We consider
workers (i.e., the available resources to perform tasks at
each step) as identically qualified and thus they are able
to work on any task in the workflow scheduling prob-
lem. In general, this is not necessarily the case, and one
could extend the models we derive to accommodate for
multiple categories of workers (where tasks also depend
on different or even multiple categories) seamlessly. Visu-
ally, workflow scheduling can be represented as a directed
acyclic graph (DAG), where jobs Ji are represented as
nodes and edges illustrate the set of dependencies for

each job. An example of a 6-node problem with limited
available resources at each time slot is shown in Fig. 1a,b.
The solution of a problem is a makespan map that shows
when each job is completed. Sub-optimal and optimal
makespan maps for this example problem are presented
in Fig. 1c,d respectively.

III. Problem Formulation

Before formulating the workflow scheduling problem as
a QUBO, we introduce some assumptions that allow for
the simplification of the optimization, without loss of the
generality. Here, we assume that (i) a single job can not
occupy more than a single time slot, while the length of a
job equals exactly one time slot length; (ii) multiple jobs
can be started in a single time slot if there are sufficient
resources; (iii) all resources are identical and the amount
of available resources at the current time step is bounded
by the number rmax; (iv) jobs can only be started if all
parent jobs are completed.

A. Binary Optimisation

In a binary variable formulation, the solution of a work-
flow scheduling problem is represented by the set of de-
cision variables ~x, where each binary variable xi,t repre-
sents the following:

xi,t =

{
1, if ith job is started in the tth time slot,

0, otherwise.

(1)
Using this notation, we can express all the neces-

sary constraints which appear naturally in the workflow
scheduling.

A job is started only once. All jobs start once and
only once, otherwise we introduce unnecessary repeti-
tions that use more resources than needed. This con-
straint is represented by a simple equality:

∑
t

xi,t = 1, ∀ i. (2)

All jobs are started in order. We must ensure that
no solutions to the QUBO allow starting a task before
the previous dependent tasks are completed. In order to
satisfy this condition, we introduce a constraint in the
following way. Let us denote the set of all children for
ith job as Oi. In our binary formulation we introduce
the following penalty:

xi,t1xj,t2 = 0 ∀i, t2 6 t1, j ∈ Oi. (3)

This is sufficient (along with Eq. (2)) to ensure causal-
ity of dependent tasks. Any ordering of tasks in which



3

0

1

2

3
4

5
5

3

7

8
1

10

Greedy suboptimal makespan Optimal makespan

Workflow scheduling as a directed graph Available resources
a) b) 

c) d) 

FIG. 1: Example of a workflow scheduling problem with 6 jobs. a) Directed acyclic graph with 6 nodes (job index is
inside the circle) that illustrates the required ordering (parents-children relations) and resources for each job (number next to
the circle). b) Available resources for each time slot when one or more jobs can be completed. The maximum number of time
slots is fixed to be seven. c) Makespan map of the problem processed by sub-optimal greedy algorithm. Map shows at which
time slot which job should be completed. The total makespan for greedy solution is 7 time slots. d) Makespan map of the
problem processed by optimal algorithm. The total makespan is 5 time slots. Two jobs #1 and #4 are completed in a same
time slot #3 since their parents were completed and the number of available resources (9) is higher than the required resources
for both jobs (3+1).

children are scheduled before their parents result in
higher objective value than the correct ordering, which
is what we require.

A job is started if and only if there are enough re-
sources. A job starts in the tth time slot only if the
amount of resources related at tth time slot is enough to
cover the job. Practically, such a model is appropriate
under the conditions of identical resources whose avail-
ability fluctuates given a known schedule. To encode this
constraint, we use the following system of inequalities:∑

i

xi,tri 6 rt, ri, rt ∈ [0, rmax] , (4)

where ri is the amount of resources required by the ith
job, rt denotes the available resources at time slot t,
and rmax is the total amount of resources in the problem.

Giving formulation of all the constraints in a binary
format, we can construct a single quadratic cost func-
tion containing constraints as additive penalties, i.e. the

QUBO format.

B. Constructing the QUBO formulation

1. Transforming inequality to equality

Inequalities are transformed into equalities for binary
variables by introducing binary slack variables in the fol-
lowing manner:

∑
j

ai,jxj 6 bi ⇐⇒ bi −
∑
j

ai,jxj =

Ni−1∑
k=0

αi,k2k. (5)

Here, Ni = b(log2 (Di))c + 1 with Di = max(bi −∑
j ai,jxj), and b...c means rounding for positive inte-

gers and 0 otherwise. In the case of negative Di, there is
no x that satisfies the inequality. If

∑
j ai,jxj = bi, then

Di = 0, resulting in Ni = 1.



4

2. Objective function

It is important to note that our workflow optimization
formulation focuses on solving the NP-hard makespan
minimization problem, rather than the NP-complete de-
cision problem. Thus, we define the objective cost as a
function of the makespan, which is to be minimized. We
introduce a penalty term which penalizes starting a job
after the expected runtime, whose magnitude is a tuned
hyperparameter. The resulting objective has the form:

C̃ =
∑
i,t>R

f (t−R)xi,t, (6)

where f is a monotonically increasing function of t−R
with R being the total expected runtime. Combining all
constraints in the form of penalties, we obtain

C = C̃+β
∑
i

(∑
t

xi,t − 1

)2

+γ
∑

i,t1,t26t1,j∈Oi

xi,t1xj,t2+

+ ε
∑
t

(∑
i

xi,tri +

Nt−1∑
k=0

αt,k2k − rt

)2

, (7)

where β, γ, ε are penalty weights for one-time job start,
ordering, and limited resources, respectively. Here, Nt =
blog2 (rt −

∑
i xitri)max

c+ 1 is the number of slack vari-
ables for the tth time-step as per Eq. (5).

Unbounded search could be performed to find optimal
penalty weights that maximize the probability of obtain-
ing minima, but we set β = γ = ε = A, f(t−R) = t−R,
disregarded the rigorous analysis of the behaviour of
solvers for different values of hyperparameters. Thus,
QUBO could be represented as the sum of two terms:

C = C̃ +AQ0. (8)

The guarantee that an optimal solution would be fea-
sible is similar to the estimate in [34], where such suffi-
cient conditions for feasibility were found. Specifically,

A > C̃ [feas] , where feas is any feasible solution to the
problem. Indeed, supposing the optimal solution opt is
not feasible in this case, we get a contradiction by the
following chain of inequalities:

C̃ [opt] +AQ0 [opt] > A+ C̃ [opt] > A > C̃ [feas] . (9)

3. Size reduction

Lastly, given that we know the resource distribution
beforehand – both required and available – we simplify
the problem by assuming that the ith job can not be
started at tth time slot if there are not enough resources:

xi,t = 0 if ri > rt. (10)

This trick allows us to reduce the problem size by
conditioning on infeasible variables rather than adding
penalties for the inability to start a job.

C. Decomposing the QUBO formulation

Combining all constraints into a single objective
function– including all ancillas necessary for transform-
ing inequalities– generates a significant increase in the
number of variables in the final QUBO. This signi-
fies the polynomial overhead incurred by transforming
generic optimization problems to QUBO forms. How-
ever, we can simplify the problem using decomposition
techniques, transforming a larger QUBO into a set of
smaller instances. We accomplish this by leveraging the
hierarchical structure of the workflow illustrated by a
strict parents-children relation, as dictated by the in-
dividual tasks’ dependencies. These smaller instances
(sub-problems) are created in a way that ensures all con-
straints in the larger problem remain satisfied. Such a
decomposition significantly simplifies the problem com-
plexity, and is especially useful at larger problem sizes
since problems with hundreds of jobs are challenging even
in the most efficient linear programming formulations.
The complete optimisation of the problem is therefore
performed by solving these sub-problems in a dynamic
manner. Interestingly, such a method is applicable not
only for quantum algorithms but also for any other ex-
act or heuristic discrete optimisation tool or formulation,
including LP, QUBO, HOBO, etc. We now describe the
method in more detail.

We start with finding the roots of the directed graph
representation of the workflow scheduling problem (i.e.,
jobs without any parents), and a fixed number of their
descendants, m jobs in total. We also fix the number
of time slots n that can be processed in a single sub-
problem. Therefore, we have to schedule m jobs across n
time slots. In other words, n,m are now hyperparameters
that control the globality of each of the sub-problems.

In order to formulate such sub-problems as QUBO cor-
rectly we slightly modify the constraints. Firstly, we re-
lieve the requirements on all jobs to be started only once
that are stated in Eq. (2). Instead we set a constraint
that allows the completion of a job either zero or one
time: ∑

t

xi,t ≤ 1 for all i (11)

Such a constraint comes from the local uncertainty of
how many jobs have to be completed in the corresponding
sub-problem. For this purpose, we rewrite the cost term



5

from Eq. (6) in the following way:

C̃ = −
m,n∑
i,t

xi,t, (12)

which encourages the completion of more expensive jobs
in terms of resources. Secondly, the order constraint set
in Eq. (3) is not suitable anymore since it does not penal-
ize the case where a child with uncompleted parent was
started. Therefore, to address this issue, we change the
cost function term for order violation from Eq. (3) in the
following way

xj,t1

(
1−

∑
t2<t1

xi,t2

)
∀i, ∀t1, ∀j ∈ Oi. (13)

The minimum of this is now when xj,t1 = 1 and any
xi,t2 = 1 (where order is conserved), or if xj,t1 = 0 and
so no child task of i is scheduled. Using the solution of
this sub-problem, we can define new roots and their de-
scendants, which are considered as the next sub-problem
until all jobs are completed in this manner.

To illustrate the decomposition method let us consider
the 6-node example depicted in Fig. 1 from before. Here,
we set the number of jobs to be n = 3 and number of
time slots m = 2 in a single subproblem. The scheme
of the subproblems division and their solutions is shown
in Fig. 2. Here, the first three jobs are picked since the
job with index 0 is a root and 1 and 2 are its closest
descendants. It is impossible to place all three jobs in
two time slots, therefore only job 0 and 2 are completed:
0 must be completed since it is a root, and 1 requires
more resources than 2. More expensive jobs are com-
pleted earlier, if possible, since we do not know if there
are enough available resources in the next time slots for
these jobs. Within the second subproblem, jobs 1 and 3
are new roots since their ancestor is completed, and job
4 is the closest descendant for job 3. In contrast with
the first subproblem, all three jobs are completed. On
the last subproblem, only job 5 is left and is successfully
completed in a single time slot.

The advantage of such an decomposition algorithm lies
in its dynamic nature. In case of failures during the prob-
lem solution when the number of available resources is
changed, the algorithm can process such an unexpected
event – there is no need to restart the whole solution con-
struction. However, the disadvantage of the presented
algorithm is its locality, and therefore, the fact that it
may provide sub-optimal solutions. One way to further
minimize the total makespan (and ultimately perform
global optimisation) is to increase the size of subprob-
lems. The worst case scenario requires the subproblem
to be the same size as the whole problem. Existing high-
performance linear programming solvers, e.g. CPLEX,
struggle to schedule more than 40 jobs in a reasonable
amount of time, and thus, limit the maximum problem
size that can be processed at a single step. This challenge

0

1

2
5

3

7

0

1

2

3
4

3

8
1

50

1

2

3
4

10

Subproblem 1

Subproblem 2

Subproblem 3

Discrete
Optimisation

Solver

Solution

Solution

Solution

Discrete
Optimisation

Solver

Discrete
Optimisation

Solver

FIG. 2: Decomposition technique for the problem de-
picted in Fig. 1. According to the algorithm, the whole
problem is divided into three subproblems where we aim to
complete at max three jobs in two time slots and create the
whole makespan map (depicted on the left). In the first sub-
problem, jobs 0 (root), 1 (first descendant), 2 (first descen-
dant) are available for processing, however only 0 and 2 are
completed due to the lack of resources: 0 is completed since
it is a root and 2 because it requires more resources than 1.
In the second subproblem, jobs 1 (new root), 3 (new root), 4
(first descendant) are considered and all three are completed.
In the last subproblem, only job 5 (new root) remains and
it is completed in a single time slot. Each subproblem can
be solved in any suitable optimisation formulation via any
discrete solver.

can be addressed by quantum computers potentially pro-
viding better global optimality by solving larger subprob-
lems.

IV. Data & Methods

A. Data

For the purposes of benchmarking, we generate test
data inspired by internal, industrially-relevant use cases.
As described in Section II, the problems are represented
as directed acyclic graphs, with nodes representing jobs
and edges their dependencies. The graphs vary in size,
from 5 to 30 nodes in increments of 5, and the resources
associated with each job are drawn uniformly between 1
and 10.



6

5 10 20 30 50 100

15

30

60

150

300

10

100

M
ak

es
pa

n

Number of jobs

FIG. 3: Average makespan obtained via greedy algo-
rithm as function of number of jobs. In order to solve
the problem as QUBO we need to know what is the maxi-
mum number of resource may be required – it poses the upper
bound on the expected makespan. This value is obtained by
solving the problem with fast greedy algorithm ensuring that
the problem can be solved at least with the greedy makespan.
For our data, the makespan grows linearly with the number
of jobs as (2.75 ± 0.06)N .

In graphs derived from the use cases serving as inspi-
ration for the benchmarking data set, patterns of connec-
tivity can vary widely. To explore the potential effects of
this variation, we generated graphs with edge probabili-
ties drawn from different distributions. More specifically,
graphs are generated by sequentially adding nodes until
the desired problem size is reached; the probability of a
node having a previous node as its parent is a function of
the previous node’s order in that sequence (for instance,
if this function is 1/x, the tenth node added to the graph
has a 1/10 probability of having the first node as its par-
ent). We tested three different such parent probability
distributions (or fall-off distributions), generating sets
of instances using 1/x, 1/x2, and 1/

√
x. We found that

the expected densities of the problem graph, the respec-
tive QUBO, and the expected makespan did not differ
significantly in the problem sizes we studied. Therefore
we choose to present 1/x in this paper (which generated
sufficiently complex graphs) and leave varied graph con-
nectivity as a topic for future work. Results from the
other fall-off probabilities were qualitatively similar.

B. Algorithms

In this section we describe various algorithms used
to solve the workflow scheduling problem. We consider
classical, quantum and hybrid algorithms.

Greedy algorithm

The greedy approach can handle any problem size.
However, by definition, it is often not optimal. The al-
gorithm keeps in memory all parent-children relations,
and firstly schedules the roots. After completing them,
it removes these jobs from the initial graph and evaluates
new roots. These new roots are then processed, removed

then from the graph, and so on. This procedure is re-
peated until all jobs are completed. The non-optimality
of such an approach can be seen for the simple 6-node
graph presented in Fig. 1c.

Classical Exact Solver: Linear Programming
Linear programming is one of the most powerful

computing paradigms for discrete optimisation. Here,
we implement the constraints described in Section III A
in linear form, and optimize the cost function from
Eq. (6). We use the branching-based CPLEX solver [35].
This algorithm successfully finds the optimal scheduling
for 30 jobs and 80 available time slots, but struggles
to solve larger problems. The runtime scaling for this
problem is roughly exponential, which is not surprising
since the problem class is NP-hard in the worst case,
and CPLEX is an exact solver.

Classical Exact Solver: QUBO
To solve the QUBOs classically, we run the CPLEX

as a quadratic programming solver [35]. Here, we limit
the runtime to 10 minutes. The results in this case are
worse than those for the LP using CPLEX, since we
generate more variables in the QUBO model.

Classical Metaheuristic Solver: Simulated Annealing
While branching-based CPLEX is an exact solver,

and so it can find the optimal solution in infinite time,
metaheuristic approaches are usually used either to
find sub-optimal solution quickly, or optimal solutions
with some probability. The sub-optimal solution can
then be used as a starting point for an exact solver.
Here, in the framework of the QUBO, we use simulated
thermal annealing (SA) as a metaheuristic QUBO solver.
We use the implementation from Ref. [36], a fast and
robust solver written in C++ with a linear temperature
schedule. We set the number of sweeps to 50,000 and
number of attempts to 10,000 – a parameter setting
which corresponds to 10 minutes of wall-clock time.

Quantum Annealing Solver: D-Wave System
In contrast to thermal annealing, quantum annealing

has the potential of avoiding local minima and therefore
a providing better solutions to QUBO problems. Here
we use D-Wave’s Advantage quantum processing unit
(QPU), which has over 5,000 qubits and 15-way qubit
connectivity [37]. The limited connectivity forces us to
use minor-embedding techniques to map our problem
to the QPU’s topology by chaining multiple physical
qubits to represent a single logical qubit. Thus, ar-
bitrary topologies can be realized in QPUs, but with
polynomial overhead in the number of qubits used
to represent the problem. For instance, one 10-job
scheduling problem as a QUBO requires 210 logical
qubits, but with embedding leads to 2,206 qubits,
which exceeds the original size by almost an order of
magnitude. For the 15-node problem, it was impos-
sible to find a valid embedding on the Advantage system.



7

Classical Quantum Hybrid

a) b) 

0 10 20 30 40 50 60 70 80 90 100 110
2

3

4

5

6

7

8

9

10

11

Q
U

B
O

 S
iz

e

Q
U

B
O

 d
en

si
ty

, %

Number of jobs

1.8e4

1.4e4

1.0e4

6.0e3

2.0e3

FIG. 4: QUBO solutions using classical, quantum, and hybrid algorithms, and problem size analysis. a) The
normalized cost function value for 5, 10, and 15-job scheduling problem solved as a QUBO on classical solvers, CPLEX and
SA, quantum, annealing and QuEnc, and hybrid, HSS and Hybrid QuEnc based on greedy decomposition. It is clear that
the greedy decomposition with the QuEnc engine (that can be potentially replaced with any other suitable solver) is the only
approach that can schedule jobs optimally. Since the maximum size of subproblems is fixed, Hybrid QuEnc can solve arbitrary
large problem. b) Size of a QUBO as function of number of jobs N . In our data the number of required resources grows as
(2.75 ± 0, 06)N , and the QUBO size grows ∼ N1.8. To schedule 5 jobs the QUBO is formulated for 60 binary variables, for
10-job problem we work with 210 bits, and for 15 we need 720 bits.

Quantum Gate-based Solver: Terra Quantum’s QuEnc
Inspired by variational quantum optimization algo-

rithms and quantum machine learning techniques, we use
the recently-proposed QuEnc algorithm [38, 39]. QuEnc
is a heuristic QUBO solver for gate-based quantum
systems. Using an amplitude encoding mechanism, it is
possible to encode a nc-variable problem using O(log nc)
qubits, which differs it from QAOA [10]. The algorithm
also utilizes different ansätze, optimisation techniques,
and circuit expressability analysis.

Hybrid Solver with QUBO decomposition: D-Wave
HSS

Mitigating the restrictions posed by the existing
hardware, hybrid methods were proposed to decompose
large problem into smaller instances so they can be
solved using quantum algorithms. One of such hybrid
algorithm is the Hybrid Solver Service from D-Wave
Systems, where the system finds cores of a problem,
splits it into smaller pieces via classical algorithms and
sends them to a quantum annealer. Such an algorithm
is not guaranteed to be optimal, but can be used as a
competition metaheuristic, similar to other annealing-
based algorithms.

Hybrid Solver with Greedy decomposition: Hybrid
QuEnc

Here, we combine the greedy decomposition technique
introduced in Section III C, with the quantum engine
QuEnc. We divide the scheduling problem into subprob-
lems, each of which is then solved via QuEnc. It is worth
noting that one can utilize any such solver to solve the

subproblems, but we pick QuEnc for the potential scaling
of gate-based quantum algorithms.

V. Performance comparison

As an illustrative example, we solve three sizes of
scheduling problems with 5, 10 and 15 jobs via all algo-
rithms described above. As a benchmark, we use the LP
solution and find the minimum and the maximum cost
function value of the corresponding QUBO, Cmin and
Cmax, that we used to normalize the cost function value.
The results of the solutions comparison are depicted in
Fig. 4a.

Among classical approaches we compare exact –
CPLEX – and metaheuristic – SA – QUBO solvers.
While both CPLEX and SA optimally solve the 5-jobs
problem, 10-jobs and 15-jobs scheduling can not be
solved via SA. CPLEX can find the optimal scheduling in
general, but within the limited time window of 60 min-
utes it fails and provides only suboptimal QUBO solu-
tion. Moreover, in the case when runtime is limited to
a few seconds simulated annealing provides better solu-
tions.

For the quantum solvers, quantum annealing is con-
trolled by annealing time and number of samples, while
QuEnc is controlled by circuit depth, learning hyperpa-
rameters and number of repetitions. We vary the solver
parameters taking into account that increasing number of
reads and annealing time both leads to the higher proba-
bility to find optimal solution, but problem run duration
range is limited. For The Advantage system, we used an
annealing time of 2 ms and collected 500 samples.



8

0

1

2
5

3

7

0

1

2

3
4

3

8
1

50

1

2

3
4

10

Subproblem 1

Subproblem 2

Subproblem 3

QuEnc, 15-bits QUBO

...

H

H

H

H

Ry(θ1)

Ry(θ2)

Ry(θ3)

Ry(θi)

x 50

H Ry(θi)

...

H

H

H

H

Ry(θ1)

Ry(θ2)

Ry(θ3)

Ry(θi)

x 50

H Ry(θi)

H Ry(θ1)

...

H

H

H

H

Ry(θ1)

Ry(θ2)

Ry(θ3)

Ry(θi)

x 50

H Ry(θi)

Optimum

Optimum

Optimum

QuEnc, 17-bits QUBO

QuEnc, 9-bits QUBO

FIG. 5: Hybrid Quantum solution based on greedy
decomposition and QuEnc algorithm. The 6-node prob-
lem, decomposition of which is shown in Fig. 2, solved via
QuEnc with fixed circuit layout containing 50 layers with
continuously tuned rotations. On the right-hand-side we show
the QuEnc’s convergence and corresponding quantum circuits
with 5, 6, and 5 qubits that solve 15-bit, 17-bit and 9-bit QU-
BOs for subproblems, respectively. By adjusting the QuEnc
hyperparameters one can achieve faster convergence with less
gates but it requires additional time-consuming tuning, which
we avoid here. The final scheduling coincides with the optimal
one provided by linear programming.

For QuEnc, we fix the number of layers to be 100, per-
form learning using gradient descent with a fixed veloc-
ity, and repeat the algorithm 10 times. While the 5-job
problem is solved with the same optimality, QuEnc pro-
vides better solution for 10-job problem and manages to
solve 15-job problem exploiting just 10 qubits. We want
to emphasize that quantum annealing is performed on a
real QPU, while QuEnc was simulated, nevertheless, it is
clear that QuEnc utilizes much fewer resources.

Combining classical and quantum algorithms together,
we tested two hybrid solutions. The first, HSS, success-
fully solves the 5-job problem, but can not schedule 10-
and 15-job problems, providing less optimal solutions
than simulated annealing. As a second approach, we
combined greedy decomposition with QuEnc as the
subproblem solver, using 2 time slots and 3 jobs in a
single subproblem. We observed that QuEnc with 50
layers requires 5.3 restarts on average to converge to
the optimal solution, with a maximum QUBO size of
17 variables for subproblems. The example of the 5-job
problem solution is presented in Fig. 5. On the right-

hand-side we plot the simulated QuEnc convergence and
corresponding quantum circuits. As can be seen, the
circuit used in the experiment is hardware-efficient –
it utilizes connections only between neighbour qubits.
With given decomposition, 6 qubits at most are required.
Hardware-efficient circuit and small number of qubits
demonstrate the possibility to run these algorithm on
NISQ devices. Further increasing the subproblem size
leads to an increase in the number of qubits improving
the global solution optimality for some problems, as
discussed further in Section V A.

The QUBO size as function of number of jobs is shown
in Fig. 4b. From the greedy solution we observed that
the number of required time slots to schedule N jobs
scales as M = 2.8N . The QUBO size before reduction
is NM +N log2 rmax, where rmax is the maximum num-
ber of resources available in a single time slot. The first
term corresponds to the decision variables (jobs and time
slots), and the second to slack (ancillary) variables. Since
M = O(N) and rmax are fixed in our problem type, the
QUBO size scales as O(N2). For considered data, the
QUBO size scales as O(N1.8). In order to estimate the
weight A from Eq. (8) let us consider the case R = 0 and
f(t) = t for objective function in Eq.(6):

C̃ =
∑
i,t>0

txi,t 6 tmax

∑
i,t

xi,t 6 2.8N2. (14)

A. Decomposition analysis

We investigate decomposing approach, proposed in
Section III C, using exact solution, in order to estimate
the features of the pipeline in the situation when all
the sub-problems are solved properly. The reduction of
makespan for 50 instances of a 20 nodes graph with the
increase of a subproblem size is depicted in Fig. 6. The
factors, which influence the greedy decomposition, are (i)
the globality of sub-problem, (ii) the number of consid-
ered jobs per time slot r = n/m, and (iii) disability to
guarantee even the feasibility of the global solution. In-
deed, if coefficient r is fixed, increasing the size of the
sub-problem helps algorithm to allocate jobs more glob-
ally, thus the optimality of the final solution increases.
This phenomena is apparent in Fig. 6 (where r = 1) and
permits efficient practical usage to the algorithm.

Hyperparameters, such as the number of jobs n and
the number of timeslots m, including ratio r, should be
tuned accordingly to considered sample alongside with
the penalty weights in a QUBO formulation.

VI. Conclusion

In this paper we presented a novel formulation of
a particular class of scheduling problem, the workflow



9

0 2 4 6 8

40

42

44

46

48

50

52

54

Number of timeslots in a subproblem

M
ak

es
pa

n

FIG. 6: Average makespan dependency on the size
of a subproblem. Applying decomposition to 50 problems
from test data with 20 nodes and 1/x fall-off probability, we
can see the predictable decreasing in average makespan with
the growth of the sub-problem size. Here, number of time
slots related to every step of the algorithm is equal to the
maximum number of jobs taken for accommodation.

scheduling problem, as a QUBO. Inspired by a real-world
use-case, we expanded upon previous known implemen-
tations of similar scheduling problems to include more
realistic constraints in our problem. Specifically, we
consider the case where some jobs are dependent on
each other, as well as a maximum capacity of resources
(at every time) which must be respected. We found
that the introduction of these constraints increased the
sizes of the QUBOs considerably, and so we investigated

decomposition techniques in order to solve the QUBOs
with the various quantum and hybrid solvers. We
found that the hybrid and classical algorithms were the
most successful in solving the instances, although no
solver was able to solve all QUBOs at all sizes. The
quantum solvers struggled to solve even the smallest
problems. The improvement in performance due to
the decomposition technique further highlights how the
“quantum” difficulty in solving scheduling problems
(and optimization problems in general) is more complex
than the difficulty of the class of problems being solved.
By reducing the problem size (and therefore the QUBO
complexity), some of these limitations were able to be
overcome. Therefore, future work will be dedicated to
finding particular sub-classes of scheduling problems
that can be more efficiently represented in QUBO
form. Furthermore, novel implementation of hybrid
quantum and quantum-inspired algorithms will also be
investigated, to better address the QUBOs arising from
such real-world instances.

Authors contributions

A.A. and S.Ya. conceived of the project idea, devel-
oped the workflow scheduling problem in its presented
form based on the industrial use case, and guided the
work presented here. A.A. wrote the methods used to
generate synthetic model data. S.Ya. generated the
problem instances. A.I.P., S.Yu., and M.R.P. developed
the QUBO formulation and benchmarked performance,
A.I.P. and S.Yu. developed the corresponding software
modules and evaluated complexity. A.I.P. and M.R.P.
developed and tested the decomposition method. All au-
thors contributed to the text of the paper.

[1] P. Benioff, Journal of Statistical Physics 22, 563 (1980),
ISSN 1572-9613.

[2] R. P. Feynman, International Journal of Theoretical
Physics 21, 467 (1982), ISSN 1572-9575.

[3] R. P. Feynman, Foundations of Physics 16, 507
(1986), ISSN 1572-9516, URL https://doi.org/10.

1007/BF01886518.
[4] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, arXiv

(2000).
[5] D. Aharonov, W. van Dam, J. Kempe, Z. Landau,

S. Lloyd, and O. Regev, SIAM Review 50, 755 (2008),
https://doi.org/10.1137/080734479, URL https://doi.

org/10.1137/080734479.
[6] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C.

Bardin, R. Barends, R. Biswas, S. Boixo, F. G.
S. L. Brandao, D. A. Buell, et al., Nature 574, 505
(2019), ISSN 1476-4687, URL https://doi.org/10.

1038/s41586-019-1666-5.
[7] G. J. Mooney, G. A. L. White, C. D. Hill, and L. C. L.

Hollenberg, Advanced Quantum Technologies 4, 2100061
(2021).

[8] M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting,

F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Jo-
hansson, P. Bunyk, et al., Nature 473, 194 (2011), ISSN
1476-4687.

[9] T. Lanting, A. J. Przybysz, A. Y. Smirnov, F. M.
Spedalieri, M. H. Amin, A. J. Berkley, R. Harris, F. Al-
tomare, S. Boixo, P. Bunyk, et al., Phys. Rev. X
4, 021041 (2014), URL https://link.aps.org/doi/10.

1103/PhysRevX.4.021041.
[10] E. Farhi, J. Goldstone, and S. Gutmann, arXiv (2014),

1411.4028.
[11] A. Lucas, Frontiers in Physics 2, 5 (2014), ISSN 2296-

424X, URL https://www.frontiersin.org/article/

10.3389/fphy.2014.00005.
[12] F. Neukart, G. Compostella, C. Seidel, D. von Dollen,

S. Yarkoni, and B. Parney, Frontiers in ICT 4 (2017),
ISSN 2297-198X, URL https://www.frontiersin.org/

article/10.3389/fict.2017.00029.
[13] M. Ohzeki, A. Miki, M. J. Miyama, and M. Ter-

abe, Control of automated guided vehicles without col-
lision by quantum annealer and digital devices (2018),
arXiv:1812.01532.

[14] S. Yarkoni, A. Alekseyenko, M. Streif, D. Von Dollen,

https://doi.org/10.1007/BF01886518
https://doi.org/10.1007/BF01886518
https://doi.org/10.1137/080734479
https://doi.org/10.1137/080734479
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://link.aps.org/doi/10.1103/PhysRevX.4.021041
https://link.aps.org/doi/10.1103/PhysRevX.4.021041
https://www.frontiersin.org/article/10.3389/fphy.2014.00005
https://www.frontiersin.org/article/10.3389/fphy.2014.00005
https://www.frontiersin.org/article/10.3389/fict.2017.00029
https://www.frontiersin.org/article/10.3389/fict.2017.00029


10

F. Neukart, and T. Bäck, in 2021 IEEE International
Conference on Quantum Computing and Engineering
(QCE) (2021), pp. 35–41.

[15] S. Yarkoni, E. Raponi, S. Schmitt, and T. Bäck, arXiv
(2021), arXiv:2112.07491.

[16] J. R. Finžgar, P. Ross, J. Klepsch, and A. Luckow, Quark:
A framework for quantum computing application bench-
marking (2022), arXiv:2202.03028.

[17] S. Yarkoni, F. Neukart, E. M. G. Tagle, N. Magiera,
B. Mehta, K. Hire, S. Narkhede, and M. Hofmann, Quan-
tum Shuttle: Traffic Navigation with Quantum Comput-
ing (Association for Computing Machinery, New York,
NY, USA, 2020), p. 22–30, ISBN 9781450381000, URL
https://doi.org/10.1145/3412451.3428500.

[18] P. W. Shor, SIAM Journal on Computing 26,
1484 (1997), URL https://doi.org/10.1137/

s0097539795293172.
[19] L. K. Grover, arXiv (1996), arXiv:quant-ph/9605043.
[20] A. W. Harrow, A. Hassidim, and S. Lloyd, Physical Re-

view Letters 103 (2009).
[21] M. R. Perelshtein, A. I. Pakhomchik, A. A. Melnikov,

A. A. Novikov, A. Glatz, G. S. Paraoanu, V. M. Vinokur,
and G. B. Lesovik, arXiv:2003.12770 (2020).

[22] J. Preskill, Quantum 2, 79 (2018), ISSN 2521-327X, URL
https://doi.org/10.22331/q-2018-08-06-79.

[23] A. Skolik, J. R. McClean, M. Mohseni, P. van der Smagt,
and M. Leib, Quantum Machine Intelligence 3 (2021),
URL https://doi.org/10.1007/s42484-020-00036-4.

[24] A. Kandala, A. Mezzacapo, K. Temme, M. Takita,
M. Brink, J. M. Chow, and J. M. Gambetta, Na-
ture 549, 242 (2017), URL https://doi.org/10.1038/

nature23879.
[25] M. P. Harrigan, K. J. Sung, M. Neeley, K. J. Satzinger,

F. Arute, K. Arya, J. Atalaya, J. C. Bardin, R. Barends,
S. Boixo, et al., Nature Physics 17, 332 (2021), URL
https://doi.org/10.1038/s41567-020-01105-y.

[26] E. Lawler, Ann. Discrete Math. 2, 75 (1978).
[27] J. Lenstra and A. Rinnooy Kan, Oper. Res. 26, 22 (1978).
[28] J. Du, J.-T. Leung, and G. Young, Inform. and Comput.

92, 219 (1991).

[29] R. van Bevern, R. Bredereck, L. Bulteau, C. Ko-
musiewicz, N. Talmon, and G. J. Woeginger, in Inter-
national Conference on Discrete Optimization and Oper-
ations Research (Springer, 2016), pp. 105–120.

[30] J. Lenstra, A. Rinnooy Kan, and P. Brucker, Ann. of
Discrete Math. 1, 343 (1977).

[31] M. Garey and D. Johnson, J. Assoc. Comput. Mach. 25,
499 (1978).

[32] D. Venturelli, D. J. J. Marchand, and G. Rojo, Quantum
annealing implementation of job-shop scheduling (2015),
arXiv:1506.08479.

[33] K. Ikeda, Y. Nakamura, and T. S. Humble, Scientific
Reports 9, 12837 (2019), ISSN 2045-2322, URL https:

//doi.org/10.1038/s41598-019-49172-3.
[34] S. Yarkoni, A. Huck, H. Schülldorf, B. Speitkamp, M. S.

Tabrizi, M. Leib, T. Bäck, and F. Neukart, in Compu-
tational Logistics, edited by M. Mes, E. Lalla-Ruiz, and
S. Voß (Springer International Publishing, Cham, 2021),
pp. 502–517, ISBN 978-3-030-87672-2.

[35] CPLEX IBM ILOG, International Business Machines
Corporation 46, 157 (2009).

[36] S. Isakov, I. Zintchenko, T. Rønnow, and M. Troyer,
Computer Physics Communications 192, 265 (2015),
URL https://doi.org/10.1016/j.cpc.2015.02.015.

[37] C. McGeoch and P. Farré, The D-Wave Advantage Sys-
tem: An Overview Tech. Rep. (D-Wave Systems Inc,
Burnaby, BC, Canada) D-Wave Technical Report Series
14-1049A-A (2020).

[38] M. R. Perelshtein, A. B. Sagingalieva, K. Pinto, V. Shete,
A. I. Pakhomchik, A. A. Melnikov, N. R. Kenbaev,
F. Neukart, G. Gesek, A. A. Melnikov, et al., Practi-
cal application-specific advantage through hybrid quantum
computing, To be published (2022).

[39] M. R. Perelshtein, A. I. Pakhomchik, A. A. Melnikov,
M. Podobriy, I. Kreidich, B. Nuriev, S. Yudin, A. Ter-
manova, G. S. Paraoanu, and V. M. Vinokur, NISQ-
compatible variational quantum architecture for uncon-
strained and constrained discrete optimisation, To be
published (2022).

https://doi.org/10.1145/3412451.3428500
https://doi.org/10.1137/s0097539795293172
https://doi.org/10.1137/s0097539795293172
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1007/s42484-020-00036-4
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/s41567-020-01105-y
https://doi.org/10.1038/s41598-019-49172-3
https://doi.org/10.1038/s41598-019-49172-3
https://doi.org/10.1016/j.cpc.2015.02.015

	I Introduction
	II Applications of scheduling problems
	III Problem Formulation
	A Binary Optimisation
	B Constructing the QUBO formulation
	1 Transforming inequality to equality 
	2 Objective function
	3 Size reduction

	C Decomposing the QUBO formulation

	IV Data & Methods
	A Data
	B Algorithms

	V Performance comparison
	A Decomposition analysis

	VI Conclusion
	 References



